Namespaces
Variants
Actions

Difference between revisions of "Weierstrass formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
w0974701.png
 +
$#A+1 = 15 n = 0
 +
$#C+1 = 15 : ~/encyclopedia/old_files/data/W097/W.0907470 Weierstrass formula
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''for the increment of a functional''
 
''for the increment of a functional''
  
 
A formula in the classical calculus of variations (cf. [[Variational calculus|Variational calculus]]), defining the values of the functional
 
A formula in the classical calculus of variations (cf. [[Variational calculus|Variational calculus]]), defining the values of the functional
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w0974701.png" /></td> </tr></table>
+
$$
 +
J( x)  = \
 +
\int\limits _ { t _ {0} } ^ { {t _ 1 } }
 +
L( t, x, \dot{x} )  dt,\ \
 +
L: \mathbf R \times \mathbf R  ^ {n} \times \mathbf R  ^ {n} \rightarrow \mathbf R ,
 +
$$
  
in the form of a curvilinear integral of the [[Weierstrass E-function|Weierstrass <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w0974702.png" />-function]]. Let the vector function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w0974703.png" /> be an [[Extremal|extremal]] of the functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w0974704.png" />, and let it be included in an extremal field with vector-valued field slope function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w0974705.png" /> and action <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w0974706.png" />, corresponding to this field (cf. [[Hilbert invariant integral|Hilbert invariant integral]]). Weierstrass' formula
+
in the form of a curvilinear integral of the [[Weierstrass E-function|Weierstrass $  {\mathcal E} $-
 +
function]]. Let the vector function $  x _ {0} ( t) $
 +
be an [[Extremal|extremal]] of the functional $  J( x) $,  
 +
and let it be included in an extremal field with vector-valued field slope function $  U( t, x) $
 +
and action $  S( t, x) $,  
 +
corresponding to this field (cf. [[Hilbert invariant integral|Hilbert invariant integral]]). Weierstrass' formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w0974707.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
J( x)  = S( t _ {1} , x( t _ {1} ))- S( t _ {0} , x ( t _ {0} )) +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w0974708.png" /></td> </tr></table>
+
$$
 +
+
 +
\int\limits _  \gamma  {\mathcal E} ( t, x, U( t, x), \dot{x} )  dt
 +
$$
  
applies to any curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w0974709.png" /> in the domain covered by the field. In particular, if the boundary conditions of the curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w09747010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w09747011.png" /> are identical, i.e. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w09747012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w09747013.png" />, one obtains Weierstrass' formula for the increment of a functional:
+
applies to any curve $  \gamma = x( t) $
 +
in the domain covered by the field. In particular, if the boundary conditions of the curves $  \gamma = x( t) $
 +
and  $  \gamma _ {0} = x _ {0} ( t) $
 +
are identical, i.e. if $  x( t _ {i} ) = x _ {0} ( t _ {i} ) $,  
 +
$  i= 0, 1 $,
 +
one obtains Weierstrass' formula for the increment of a functional:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w09747014.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\Delta J  = J( x) - J( X _ {0} ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097470/w09747015.png" /></td> </tr></table>
+
$$
 +
= \
 +
\int\limits _ { t _ {0} } ^ { {t _ 1 } } {\mathcal E} ( t, x( t), U( t, x( t)), \dot{x} ( t))  dt.
 +
$$
  
 
Formulas (1) and (2) are sometimes referred to as Weierstrass' fundamental theorem.
 
Formulas (1) and (2) are sometimes referred to as Weierstrass' fundamental theorem.

Latest revision as of 08:28, 6 June 2020


for the increment of a functional

A formula in the classical calculus of variations (cf. Variational calculus), defining the values of the functional

$$ J( x) = \ \int\limits _ { t _ {0} } ^ { {t _ 1 } } L( t, x, \dot{x} ) dt,\ \ L: \mathbf R \times \mathbf R ^ {n} \times \mathbf R ^ {n} \rightarrow \mathbf R , $$

in the form of a curvilinear integral of the Weierstrass $ {\mathcal E} $- function. Let the vector function $ x _ {0} ( t) $ be an extremal of the functional $ J( x) $, and let it be included in an extremal field with vector-valued field slope function $ U( t, x) $ and action $ S( t, x) $, corresponding to this field (cf. Hilbert invariant integral). Weierstrass' formula

$$ \tag{1 } J( x) = S( t _ {1} , x( t _ {1} ))- S( t _ {0} , x ( t _ {0} )) + $$

$$ + \int\limits _ \gamma {\mathcal E} ( t, x, U( t, x), \dot{x} ) dt $$

applies to any curve $ \gamma = x( t) $ in the domain covered by the field. In particular, if the boundary conditions of the curves $ \gamma = x( t) $ and $ \gamma _ {0} = x _ {0} ( t) $ are identical, i.e. if $ x( t _ {i} ) = x _ {0} ( t _ {i} ) $, $ i= 0, 1 $, one obtains Weierstrass' formula for the increment of a functional:

$$ \tag{2 } \Delta J = J( x) - J( X _ {0} ) = $$

$$ = \ \int\limits _ { t _ {0} } ^ { {t _ 1 } } {\mathcal E} ( t, x( t), U( t, x( t)), \dot{x} ( t)) dt. $$

Formulas (1) and (2) are sometimes referred to as Weierstrass' fundamental theorem.

References

[1] C. Carathéodory, "Calculus of variations and partial differential equations of the first order" , 1–2 , Holden-Day (1965–1967) (Translated from German)
[2] L. Young, "Lectures on the calculus of variations and optimal control theory" , Saunders (1969)
[3] N.I. Akhiezer, "The calculus of variations" , Blaisdell (1962) (Translated from Russian)
How to Cite This Entry:
Weierstrass formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weierstrass_formula&oldid=49191
This article was adapted from an original article by V.M. Tikhomirov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article