Namespaces
Variants
Actions

Tate conjectures

From Encyclopedia of Mathematics
Revision as of 16:54, 21 December 2020 by Richard Pinch (talk | contribs) (fix tex)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search


Conjectures expressed by J. Tate (see [1]) and describing relations between Diophantine and algebro-geometric properties of an algebraic variety.

Conjecture 1. If the field is finitely generated over its prime subfield, if V is a smooth projective variety over k , if l is a prime number different from the characteristic of the field k , if

\rho _ {l} ^ {( i)} : \ \mathop{\rm Gal} ( \widetilde{k} /k) \rightarrow \ \mathop{\rm Aut} _ {\mathbf Q _ {l} } H _ {l} ^ {2i} ( V \otimes _ {k} \overline{k}\; ) ( i)

is the natural l - adic representation, and g _ {l} ^ {( i)} = \mathop{\rm Lie} ( \mathop{\rm Im} ( \rho _ {l} ^ {( i)} )) , then the \mathbf Q _ {l} - space [ H _ {l} ^ {2i} ( V \otimes _ {k} \overline{k}\; ) ( i) ] ^ {g _ {l} ^ {( i)} } , the space of elements of H _ {l} ^ {2i} ( V \otimes _ {k} \overline{k}\; ) ( i) annihilated by g _ {l} ^ {( i)} , is generated by the homology classes of algebraic cycles of codimension i on V \otimes _ {k} \overline{k}\; ( cf. also Algebraic cycle).

Conjecture 2. The rank of the group of classes of algebraic cycles of codimension i on V modulo homology equivalence coincides with the order of the pole of the function L _ {2i} ( V, s) at the point s = \mathop{\rm dim} Y + i .

These conjectures were verified for a large number of particular cases; restrictions are imposed both on the field k and on the variety V .

References

[1] J.T. Tate, "Algebraic cycles and poles of zeta-functions" D.F.G. Schilling (ed.) , Arithmetical Algebraic geometry (Proc. Purdue Conf. 1963) , Harper & Row (1965) pp. 93–110 MR0225778 Zbl 0213.22804

Comments

In conjecture 2 above L _ {i} ( V, s ) is the L - series of V , defined by

L _ {i} ( V, s) = \prod _ {\mathfrak p } \{ P _ {i} ( q ^ {-s} ) \} ^ {-1} ,

where the product is over all primes \mathfrak p where V has good reduction and where P _ {i} ( q ^ {-s} ) is the i - th polynomial factor appearing in the zeta-function of the variety V \mathop{\rm mod} \mathfrak p over the residue field \mathbf F _ {q} of k at \mathfrak p ,

\zeta _ {V \mathop{\rm mod} \mathfrak p } ( s) = \ \frac{P _ {1} ( q ^ {-s} ) \dots P _ {2d-1} ( q ^ {-s} ) }{P _ {0} ( q ^ {-s} ) \dots P _ {2d} ( q ^ {-s} ) } .

In the case V = A \times \widehat{B} , with A and B Abelian varieties, conjecture 1 takes for i = 1 ( i.e. for divisors) the following form: The natural homomorphism

\mathop{\rm Hom} _ {k} ( A, B) \otimes \mathbf Z _ {l} \rightarrow \ \mathop{\rm Hom} _ { \mathop{\rm Gal} ( \overline{k} / k ) } ( T _ {l} ( A), T _ {l} ( B) )

is an isomorphism (where T _ {l} (-) is the Tate module of the Abelian variety) (see [1]). This case of the conjecture has been proved: i) k is a finite field by J. Tate [a1]; ii) if k is a function field over a finite field by J.G. Zarkin [a2]; and iii) if k is a number field by G. Faltings [a3].

For examples of particular cases where the Tate conjecture has been proved see, e.g., [a4] for ordinary K3 - surfaces over finite fields and [a5] for Hilbert modular surfaces.

References

[a1] J. Tate, "Endomorphisms of Abelian varieties over finite fields" Invent. Math. , 2 (1966) pp. 104–145 MR0206004 Zbl 0147.20303
[a2] J.G. Zarking, "A remark on endomorphisms of Abelian varieties over function fields of finite characteristic" Math. USSR Izv. , 8 (1974) pp. 477–480 Izv. Akad. Nauk SSSR , 38 : 3 (1974) pp. 471–474
[a3] G. Faltings, "Endlichkeitssätze für abelsche Varietäten über Zahlkörpern" Invent. Math. , 73 (1983) pp. 349–366 (Erratum: Invent. Math 75 (1984), 381) MR0718935 MR0732554 Zbl 0588.14026
[a4] N.O. Nygaard, "The Tate conjecture for ordinary K3-surfaces over finite fields" Invent. Math. , 74 (1983) pp. 213–237 MR723215
[a5] G. van der Geer, "Hilbert modular surfaces" , Springer (1987) Zbl 0634.14022 Zbl 0511.14021 Zbl 0483.14009 Zbl 0418.14021 Zbl 0349.14022
[a6] G. Wüstholz (ed.) , Rational points , Vieweg (1984) MR0766568 Zbl 0588.14027
How to Cite This Entry:
Tate conjectures. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tate_conjectures&oldid=51033
This article was adapted from an original article by S.G. Tankeev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article