Namespaces
Variants
Actions

Difference between revisions of "Stickelberger ideal"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fixing spaces)
 
Line 17: Line 17:
 
Let  $  G \simeq ( \mathbf Z/m \mathbf Z )  ^  \times  $
 
Let  $  G \simeq ( \mathbf Z/m \mathbf Z )  ^  \times  $
 
be its [[Galois group|Galois group]] and  $  \mathbf Z [ G ] $
 
be its [[Galois group|Galois group]] and  $  \mathbf Z [ G ] $
the group ring of  $  G $(
+
the group ring of  $  G $ (cf. also [[Group algebra|Group algebra]]; [[Cross product|Cross product]]) over the rational integers  $  \mathbf Z $.  
cf. also [[Group algebra|Group algebra]]; [[Cross product|Cross product]]) over the rational integers  $  \mathbf Z $.  
 
 
They act on ideals and on the ideal class group  $  C $
 
They act on ideals and on the ideal class group  $  C $
of  $  K _ {m} $(
+
of  $  K _ {m} $ (cf. [[Class field theory|Class field theory]]). The Stickelberger ideal  $  S $
cf. [[Class field theory|Class field theory]]). The Stickelberger ideal  $  S $
 
 
is an ideal in  $  \mathbf Z [ G ] $
 
is an ideal in  $  \mathbf Z [ G ] $
 
annihilating  $  C $
 
annihilating  $  C $
Line 121: Line 119:
 
$  S \cdot C = 0 $.
 
$  S \cdot C = 0 $.
  
For a  $  \mathbf Z [ G ] $-
+
For a  $  \mathbf Z [ G ] $-module  $  A $,  
module  $  A $,  
 
 
one defines  $  A  ^ {-} = \{ {a \in A } : {( 1 + J ) a = 0 } \} $,  
 
one defines  $  A  ^ {-} = \{ {a \in A } : {( 1 + J ) a = 0 } \} $,  
 
where  $  J = \sigma _ {- 1 }  $
 
where  $  J = \sigma _ {- 1 }  $
Line 134: Line 131:
 
then  $  [ \mathbf Z [ G ]  ^ {-} :S  ^ {-} ] = h  ^ {-} $,  
 
then  $  [ \mathbf Z [ G ]  ^ {-} :S  ^ {-} ] = h  ^ {-} $,  
 
where  $  h  ^ {-} $
 
where  $  h  ^ {-} $
is the relative class number of  $  K _ {m} $(
+
is the relative class number of  $  K _ {m} $ (Iwasawa's theorem);
Iwasawa's theorem);
 
  
 
2) if  $  g \geq  2 $,  
 
2) if  $  g \geq  2 $,  
 
then  $  [ \mathbf Z [ G ]  ^ {-} :S  ^ {-} ] = 2  ^ {a} \cdot h  ^ {-} $,  
 
then  $  [ \mathbf Z [ G ]  ^ {-} :S  ^ {-} ] = 2  ^ {a} \cdot h  ^ {-} $,  
where  $  a = 2 ^ {g - 2 } - 1 $(
+
where  $  a = 2 ^ {g - 2 } - 1 $ (Sinnott's theorem).
Sinnott's theorem).
 
  
These results have, to some extent, been generalized to absolute Abelian fields. Stickelberger ideals are also used to construct a  $  p $-
+
These results have, to some extent, been generalized to absolute Abelian fields. Stickelberger ideals are also used to construct a  $  p $-adic  $  L $-function [[#References|[a3]]].
adic  $  L $-
 
function [[#References|[a3]]].
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L. Stickelberger,  "Über eine Verallgemeinerung der Kreistheilung"  ''Math. Ann.'' , '''37'''  (1890)  pp. 321–367</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K. Iwasawa,  "A class number formula for cyclotomic fields"  ''Ann. of Math. (2)'' , '''76'''  (1962)  pp. 171–179</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  K. Iwasawa,  "Lectures on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028093.png" />-adic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028094.png" />-functions" , ''Ann. Math. Studies'' , '''74''' , Princeton Univ. Press  (1972)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  W. Sinnott,  "On the Stickelberger ideal and the circular units of a cyclotomic field"  ''Ann. of Math. (2)'' , '''108'''  (1978)  pp. 107–134</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  W. Sinnott,  "On the Stickelberger ideal and the circular units of an abelian field"  ''Invent. Math.'' , '''62'''  (1980/1)  pp. 181–234</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  T. Kimura,  K. Horie,  "On the Stickelberger ideal and the relative class number"  ''Trans. Amer. Math. Soc.'' , '''302'''  (1987)  pp. 727–739</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  S. Lang,  "Cyclotomic fields" , '''1–2''' , Springer  (1990)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  L.C. Washington,  "Introduction to cyclotomic fields" , Springer  (1982)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L. Stickelberger,  "Über eine Verallgemeinerung der Kreistheilung"  ''Math. Ann.'' , '''37'''  (1890)  pp. 321–367</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K. Iwasawa,  "A class number formula for cyclotomic fields"  ''Ann. of Math. (2)'' , '''76'''  (1962)  pp. 171–179</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  K. Iwasawa,  "Lectures on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028093.png" />-adic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028094.png" />-functions" , ''Ann. Math. Studies'' , '''74''' , Princeton Univ. Press  (1972)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  W. Sinnott,  "On the Stickelberger ideal and the circular units of a cyclotomic field"  ''Ann. of Math. (2)'' , '''108'''  (1978)  pp. 107–134</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  W. Sinnott,  "On the Stickelberger ideal and the circular units of an abelian field"  ''Invent. Math.'' , '''62'''  (1980/1)  pp. 181–234</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  T. Kimura,  K. Horie,  "On the Stickelberger ideal and the relative class number"  ''Trans. Amer. Math. Soc.'' , '''302'''  (1987)  pp. 727–739</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  S. Lang,  "Cyclotomic fields" , '''1–2''' , Springer  (1990)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  L.C. Washington,  "Introduction to cyclotomic fields" , Springer  (1982)</TD></TR></table>

Latest revision as of 05:58, 19 March 2022


Let $ m $ be a fixed natural number and $ K _ {m} $ the cyclotomic field generated by a primitive $ m $ th root of unity over the rational number field $ \mathbf Q $. Let $ G \simeq ( \mathbf Z/m \mathbf Z ) ^ \times $ be its Galois group and $ \mathbf Z [ G ] $ the group ring of $ G $ (cf. also Group algebra; Cross product) over the rational integers $ \mathbf Z $. They act on ideals and on the ideal class group $ C $ of $ K _ {m} $ (cf. Class field theory). The Stickelberger ideal $ S $ is an ideal in $ \mathbf Z [ G ] $ annihilating $ C $ and related with the relative class number $ h ^ {-} $ of $ K _ {m} $. It is defined as follows.

Let $ O $ be the ring of integers of $ K _ {m} $ and $ \mathfrak p $ a prime ideal of $ O $ that is prime to $ m $. Let $ p $ be a prime integer satisfying $ ( p ) = \mathfrak p \cap \mathbf Z $ and let $ \mathbf F _ {p} = \mathbf Z/p \mathbf Z $ be the prime field. Define a mapping $ {\psi _ {0} } : {\mathbf F _ {p} } \rightarrow {\mathbf C ^ \times = \mathbf C \setminus \{ 0 \} } $ by

$$ \psi _ {0} ( a ) = { \mathop{\rm exp} } \left ( { \frac{2 \pi i }{p} } a \right ) , $$

where $ \mathbf C $ is the complex number field. Let $ F = O/ \mathfrak p $ be the residue field and define $ {\psi _ {\mathfrak p} } : F \rightarrow {\mathbf C ^ \times } $ by composition of $ \psi _ {0} $ and the trace mapping $ T : F \rightarrow {\mathbf F _ {p} } $, i.e., $ \psi _ {\mathfrak p} = \psi _ {0} \circ T $. Let $ W _ {m} $ be the group of unities in $ K _ {m} $. Then there is an injection

$$ W _ {m} \rightarrow O \setminus \mathfrak p \rightarrow ( O/ \mathfrak p ) ^ \times = F ^ \times , $$

so that $ m $ divides $ q - 1 $ with $ q = N ( \mathfrak p ) = | F | $. This induces a bijection $ f : {W _ {m} } \rightarrow {( F ^ \times ) ^ {( q - 1 ) /m } } $. Define a character $ {\chi _ {\mathfrak p} } : {F ^ \times } \rightarrow {W _ {m} } $ of order $ m $ by

$$ \chi _ {\mathfrak p} ( x ) = f ^ {- 1 } ( x ^ {( q - 1 ) /m } ) $$

for $ x \in F ^ \times $. One can now make up the Gauss sum

$$ g _ {a} ( \mathfrak p ) = - \sum _ {x \in F ^ \times } \chi _ {\mathfrak p} ( x ) ^ {a} \cdot \psi _ {\mathfrak p} ( x ) $$

for $ a \in \mathbf Z $. For a real number $ x $, let $ \langle x \rangle $ be the number uniquely determined by $ x \equiv \langle x \rangle ( { \mathop{\rm mod} } \mathbf Z ) $ and $ 0 \leq \langle x \rangle < 1 $. For $ t ( { \mathop{\rm mod} } m ) $ with $ { \mathop{\rm gcd} } ( t,m ) = 1 $, let $ \sigma _ {t} $ be the element of $ G $ corresponding to $ t ( { \mathop{\rm mod} } m ) $ by $ G \simeq ( \mathbf Z/m \mathbf Z ) ^ \times $. For $ a \in \mathbf Z $, let $ \theta ( a ) \in \mathbf Q [ G ] $ be the element

$$ \theta ( a ) = \sum _ {t ( { \mathop{\rm mod} } m ) } \left \langle {- { \frac{at }{m} } } \right \rangle \sigma _ {t} ^ {- 1 } . $$

L. Stickelberger proved the following theorem: For $ r \geq 1 $, $ a _ {1} \dots a _ {r} ,b _ {1} \dots b _ {r} \in \mathbf Z $ one has $ \sum _ {i = 1 } ^ {r} a _ {i} \theta ( b _ {i} ) \in \mathbf Z [ G ] $ if and only if $ \sum a _ {i} b _ {i} \equiv 0 ( { \mathop{\rm mod} } m ) $. In this case, for any prime ideal $ \mathfrak p $ prime to $ m $ one has $ \prod _ {i = 1 } ^ {m} g _ {b _ {i} } ( \mathfrak p ) ^ {a _ {i} } \in K _ {m} $ and $ \mathfrak p ^ {\sum _ {i = 1 } ^ {r} a _ {i} \theta ( b _ {i} ) } $ is the principal ideal generated by $ \prod _ {i = 1 } ^ {m} g _ {b _ {i} } ( \mathfrak p ) ^ {a _ {i} } $.

The ideal $ S = \{ {\sum _ {i = 1 } ^ {r} a _ {i} \theta ( b _ {i} ) } : {\sum a _ {i} b _ {i} \equiv 0 ( { \mathop{\rm mod} } m ) } \} $ in $ \mathbf Z [ G ] $ is called the Stickelberger ideal for $ K _ {m} $, and an element of $ S $ is called a Stickelberger operator for $ K _ {m} $. Since any class of $ C $ contains a prime ideal $ \mathfrak p $ prime to $ m $, Stickelberger's theorem implies that $ S $ annihilates $ C $: $ S \cdot C = 0 $.

For a $ \mathbf Z [ G ] $-module $ A $, one defines $ A ^ {-} = \{ {a \in A } : {( 1 + J ) a = 0 } \} $, where $ J = \sigma _ {- 1 } $ corresponds to complex conjugation.

Let $ g $ be the number of primes that ramify in $ K _ {m} $. Now,

1) if $ g = 1 $, then $ [ \mathbf Z [ G ] ^ {-} :S ^ {-} ] = h ^ {-} $, where $ h ^ {-} $ is the relative class number of $ K _ {m} $ (Iwasawa's theorem);

2) if $ g \geq 2 $, then $ [ \mathbf Z [ G ] ^ {-} :S ^ {-} ] = 2 ^ {a} \cdot h ^ {-} $, where $ a = 2 ^ {g - 2 } - 1 $ (Sinnott's theorem).

These results have, to some extent, been generalized to absolute Abelian fields. Stickelberger ideals are also used to construct a $ p $-adic $ L $-function [a3].

References

[a1] L. Stickelberger, "Über eine Verallgemeinerung der Kreistheilung" Math. Ann. , 37 (1890) pp. 321–367
[a2] K. Iwasawa, "A class number formula for cyclotomic fields" Ann. of Math. (2) , 76 (1962) pp. 171–179
[a3] K. Iwasawa, "Lectures on -adic -functions" , Ann. Math. Studies , 74 , Princeton Univ. Press (1972)
[a4] W. Sinnott, "On the Stickelberger ideal and the circular units of a cyclotomic field" Ann. of Math. (2) , 108 (1978) pp. 107–134
[a5] W. Sinnott, "On the Stickelberger ideal and the circular units of an abelian field" Invent. Math. , 62 (1980/1) pp. 181–234
[a6] T. Kimura, K. Horie, "On the Stickelberger ideal and the relative class number" Trans. Amer. Math. Soc. , 302 (1987) pp. 727–739
[a7] S. Lang, "Cyclotomic fields" , 1–2 , Springer (1990)
[a8] L.C. Washington, "Introduction to cyclotomic fields" , Springer (1982)
How to Cite This Entry:
Stickelberger ideal. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stickelberger_ideal&oldid=48836
This article was adapted from an original article by T. Kimura (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article