Namespaces
Variants
Actions

Difference between revisions of "Stickelberger ideal"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fixing spaces)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s1102801.png" /> be a fixed natural number and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s1102802.png" /> the [[Cyclotomic field|cyclotomic field]] generated by a primitive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s1102803.png" />th root of unity over the rational number field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s1102804.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s1102805.png" /> be its [[Galois group|Galois group]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s1102806.png" /> the group ring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s1102807.png" /> (cf. also [[Group algebra|Group algebra]]; [[Cross product|Cross product]]) over the rational integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s1102808.png" />. They act on ideals and on the ideal class group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s1102809.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028010.png" /> (cf. [[Class field theory|Class field theory]]). The Stickelberger ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028011.png" /> is an ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028012.png" /> annihilating <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028013.png" /> and related with the relative class number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028014.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028015.png" />. It is defined as follows.
+
<!--
 +
s1102801.png
 +
$#A+1 = 92 n = 2
 +
$#C+1 = 92 : ~/encyclopedia/old_files/data/S110/S.1100280 Stickelberger ideal
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028016.png" /> be the ring of integers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028018.png" /> a [[Prime ideal|prime ideal]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028019.png" /> that is prime to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028020.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028021.png" /> be a prime integer satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028022.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028023.png" /> be the [[Prime field|prime field]]. Define a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028024.png" /> by
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028025.png" /></td> </tr></table>
+
Let  $  m $
 +
be a fixed natural number and  $  K _ {m} $
 +
the [[Cyclotomic field|cyclotomic field]] generated by a primitive  $  m $
 +
th root of unity over the rational number field  $  \mathbf Q $.
 +
Let  $  G \simeq ( \mathbf Z/m \mathbf Z )  ^  \times  $
 +
be its [[Galois group|Galois group]] and  $  \mathbf Z [ G ] $
 +
the group ring of  $  G $ (cf. also [[Group algebra|Group algebra]]; [[Cross product|Cross product]]) over the rational integers  $  \mathbf Z $.
 +
They act on ideals and on the ideal class group  $  C $
 +
of  $  K _ {m} $ (cf. [[Class field theory|Class field theory]]). The Stickelberger ideal  $  S $
 +
is an ideal in  $  \mathbf Z [ G ] $
 +
annihilating  $  C $
 +
and related with the relative class number  $  h  ^ {-} $
 +
of  $  K _ {m} $.  
 +
It is defined as follows.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028026.png" /> is the complex number field. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028027.png" /> be the residue field and define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028028.png" /> by composition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028029.png" /> and the trace mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028030.png" />, i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028031.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028032.png" /> be the group of unities in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028033.png" />. Then there is an injection
+
Let  $  O $
 +
be the ring of integers of  $  K _ {m} $
 +
and  $  \mathfrak p $
 +
a [[Prime ideal|prime ideal]] of  $  O $
 +
that is prime to  $  m $.  
 +
Let $  p $
 +
be a prime integer satisfying  $  ( p ) = \mathfrak p \cap \mathbf Z $
 +
and let  $  \mathbf F _ {p} = \mathbf Z/p \mathbf Z $
 +
be the [[Prime field|prime field]]. Define a mapping $  {\psi _ {0} } : {\mathbf F _ {p} } \rightarrow {\mathbf C  ^  \times  = \mathbf C \setminus  \{ 0 \} } $
 +
by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028034.png" /></td> </tr></table>
+
$$
 +
\psi _ {0} ( a ) = { \mathop{\rm exp} } \left ( {
 +
\frac{2 \pi i }{p}
 +
} a \right ) ,
 +
$$
  
so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028035.png" /> divides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028036.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028037.png" />. This induces a bijection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028038.png" />. Define a character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028039.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028040.png" /> by
+
where  $  \mathbf C $
 +
is the complex number field. Let  $  F = O/ \mathfrak p $
 +
be the residue field and define  $  {\psi _ {\mathfrak p} } : F \rightarrow {\mathbf C  ^  \times  } $
 +
by composition of  $  \psi _ {0} $
 +
and the trace mapping  $  T : F \rightarrow {\mathbf F _ {p} } $,
 +
i.e.,  $  \psi _ {\mathfrak p} = \psi _ {0} \circ T $.  
 +
Let  $  W _ {m} $
 +
be the group of unities in  $  K _ {m} $.  
 +
Then there is an injection
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028041.png" /></td> </tr></table>
+
$$
 +
W _ {m} \rightarrow O \setminus  \mathfrak p \rightarrow ( O/ \mathfrak p )  ^  \times  = F  ^  \times  ,
 +
$$
  
for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028042.png" />. One can now make up the [[Gauss sum|Gauss sum]]
+
so that  $  m $
 +
divides  $  q - 1 $
 +
with  $  q = N ( \mathfrak p ) = | F | $.
 +
This induces a bijection  $  f : {W _ {m} } \rightarrow {( F  ^  \times  ) ^ {( q - 1 ) /m } } $.  
 +
Define a character  $  {\chi _ {\mathfrak p} } : {F  ^  \times  } \rightarrow {W _ {m} } $
 +
of order  $  m $
 +
by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028043.png" /></td> </tr></table>
+
$$
 +
\chi _ {\mathfrak p} ( x ) = f ^ {- 1 } ( x ^ {( q - 1 ) /m } )
 +
$$
  
for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028044.png" />. For a real number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028045.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028046.png" /> be the number uniquely determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028048.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028049.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028050.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028051.png" /> be the element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028052.png" /> corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028053.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028054.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028055.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028056.png" /> be the element
+
for $  x \in F  ^  \times  $.  
 +
One can now make up the [[Gauss sum|Gauss sum]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028057.png" /></td> </tr></table>
+
$$
 +
g _ {a} ( \mathfrak p ) = - \sum _ {x \in F  ^  \times  } \chi _ {\mathfrak p} ( x )  ^ {a} \cdot \psi _ {\mathfrak p} ( x )
 +
$$
  
L. Stickelberger proved the following theorem: For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028058.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028059.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028060.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028061.png" />. In this case, for any prime ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028062.png" /> prime to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028063.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028064.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028065.png" /> is the principal ideal generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028066.png" />.
+
for  $  a \in \mathbf Z $.  
 +
For a real number  $  x $,  
 +
let  $  \langle  x \rangle $
 +
be the number uniquely determined by  $  x \equiv \langle  x \rangle ( { \mathop{\rm mod} } \mathbf Z ) $
 +
and  $  0 \leq  \langle  x \rangle < 1 $.  
 +
For  $  t ( { \mathop{\rm mod} } m ) $
 +
with  $  { \mathop{\rm gcd} } ( t,m ) = 1 $,
 +
let  $  \sigma _ {t} $
 +
be the element of  $  G $
 +
corresponding to $  t ( { \mathop{\rm mod} } m ) $
 +
by  $  G \simeq ( \mathbf Z/m \mathbf Z )  ^  \times  $.  
 +
For  $  a \in \mathbf Z $,
 +
let  $  \theta ( a ) \in \mathbf Q [ G ] $
 +
be the element
  
The ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028067.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028068.png" /> is called the Stickelberger ideal for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028069.png" />, and an element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028070.png" /> is called a Stickelberger operator for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028071.png" />. Since any class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028072.png" /> contains a prime ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028073.png" /> prime to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028074.png" />, Stickelberger's theorem implies that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028075.png" /> annihilates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028076.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028077.png" />.
+
$$
 +
\theta ( a ) = \sum _ {t ( { \mathop{\rm mod} } m ) } \left \langle  {- {
 +
\frac{at }{m}
 +
} } \right \rangle \sigma _ {t} ^ {- 1 } .
 +
$$
  
For a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028078.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028079.png" />, one defines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028080.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028081.png" /> corresponds to complex conjugation.
+
L. Stickelberger proved the following theorem: For $  r \geq  1 $,
 +
a _ {1} \dots a _ {r} ,b _ {1} \dots b _ {r} \in \mathbf Z $
 +
one has  $  \sum _ {i = 1 }  ^ {r} a _ {i} \theta ( b _ {i} ) \in \mathbf Z [ G ] $
 +
if and only if  $  \sum a _ {i} b _ {i} \equiv 0 ( { \mathop{\rm mod} } m ) $.  
 +
In this case, for any prime ideal  $  \mathfrak p $
 +
prime to  $  m $
 +
one has  $  \prod _ {i = 1 }  ^ {m} g _ {b _ {i}  } ( \mathfrak p ) ^ {a _ {i} } \in K _ {m} $
 +
and  $  \mathfrak p ^ {\sum _ {i = 1 }  ^ {r} a _ {i} \theta ( b _ {i} ) } $
 +
is the principal ideal generated by  $  \prod _ {i = 1 }  ^ {m} g _ {b _ {i}  } ( \mathfrak p ) ^ {a _ {i} } $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028082.png" /> be the number of primes that ramify in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028083.png" />. Now,
+
The ideal  $  S = \{ {\sum _ {i = 1 }  ^ {r} a _ {i} \theta ( b _ {i} ) } : {\sum a _ {i} b _ {i} \equiv 0 ( { \mathop{\rm mod} } m ) } \} $
 +
in  $  \mathbf Z [ G ] $
 +
is called the Stickelberger ideal for  $  K _ {m} $,
 +
and an element of  $  S $
 +
is called a Stickelberger operator for  $  K _ {m} $.  
 +
Since any class of  $  C $
 +
contains a prime ideal  $  \mathfrak p $
 +
prime to  $  m $,
 +
Stickelberger's theorem implies that $  S $
 +
annihilates  $  C $:
 +
$  S \cdot C = 0 $.
  
1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028084.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028085.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028086.png" /> is the relative class number of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028087.png" /> (Iwasawa's theorem);
+
For a  $  \mathbf Z [ G ] $-module  $  A $,
 +
one defines  $  A  ^ {-} = \{ {a \in A } : {( 1 + J ) a = 0 } \} $,  
 +
where $  J = \sigma _ {- 1 }  $
 +
corresponds to complex conjugation.
  
2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028088.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028089.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028090.png" /> (Sinnott's theorem).
+
Let  $  g $
 +
be the number of primes that ramify in  $  K _ {m} $.  
 +
Now,
  
These results have, to some extent, been generalized to absolute Abelian fields. Stickelberger ideals are also used to construct a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028091.png" />-adic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028092.png" />-function [[#References|[a3]]].
+
1) if  $  g = 1 $,
 +
then  $  [ \mathbf Z [ G ]  ^ {-} :S  ^ {-} ] = h  ^ {-} $,
 +
where  $  h  ^ {-} $
 +
is the relative class number of  $  K _ {m} $ (Iwasawa's theorem);
 +
 
 +
2) if  $  g \geq  2 $,
 +
then  $  [ \mathbf Z [ G ]  ^ {-} :S  ^ {-} ] = 2  ^ {a} \cdot h  ^ {-} $,
 +
where  $  a = 2 ^ {g - 2 } - 1 $ (Sinnott's theorem).
 +
 
 +
These results have, to some extent, been generalized to absolute Abelian fields. Stickelberger ideals are also used to construct a $  p $-adic $  L $-function [[#References|[a3]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L. Stickelberger,  "Über eine Verallgemeinerung der Kreistheilung"  ''Math. Ann.'' , '''37'''  (1890)  pp. 321–367</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K. Iwasawa,  "A class number formula for cyclotomic fields"  ''Ann. of Math. (2)'' , '''76'''  (1962)  pp. 171–179</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  K. Iwasawa,  "Lectures on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028093.png" />-adic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028094.png" />-functions" , ''Ann. Math. Studies'' , '''74''' , Princeton Univ. Press  (1972)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  W. Sinnott,  "On the Stickelberger ideal and the circular units of a cyclotomic field"  ''Ann. of Math. (2)'' , '''108'''  (1978)  pp. 107–134</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  W. Sinnott,  "On the Stickelberger ideal and the circular units of an abelian field"  ''Invent. Math.'' , '''62'''  (1980/1)  pp. 181–234</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  T. Kimura,  K. Horie,  "On the Stickelberger ideal and the relative class number"  ''Trans. Amer. Math. Soc.'' , '''302'''  (1987)  pp. 727–739</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  S. Lang,  "Cyclotomic fields" , '''1–2''' , Springer  (1990)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  L.C. Washington,  "Introduction to cyclotomic fields" , Springer  (1982)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L. Stickelberger,  "Über eine Verallgemeinerung der Kreistheilung"  ''Math. Ann.'' , '''37'''  (1890)  pp. 321–367</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K. Iwasawa,  "A class number formula for cyclotomic fields"  ''Ann. of Math. (2)'' , '''76'''  (1962)  pp. 171–179</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  K. Iwasawa,  "Lectures on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028093.png" />-adic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s110/s110280/s11028094.png" />-functions" , ''Ann. Math. Studies'' , '''74''' , Princeton Univ. Press  (1972)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  W. Sinnott,  "On the Stickelberger ideal and the circular units of a cyclotomic field"  ''Ann. of Math. (2)'' , '''108'''  (1978)  pp. 107–134</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  W. Sinnott,  "On the Stickelberger ideal and the circular units of an abelian field"  ''Invent. Math.'' , '''62'''  (1980/1)  pp. 181–234</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  T. Kimura,  K. Horie,  "On the Stickelberger ideal and the relative class number"  ''Trans. Amer. Math. Soc.'' , '''302'''  (1987)  pp. 727–739</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  S. Lang,  "Cyclotomic fields" , '''1–2''' , Springer  (1990)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  L.C. Washington,  "Introduction to cyclotomic fields" , Springer  (1982)</TD></TR></table>

Latest revision as of 05:58, 19 March 2022


Let $ m $ be a fixed natural number and $ K _ {m} $ the cyclotomic field generated by a primitive $ m $ th root of unity over the rational number field $ \mathbf Q $. Let $ G \simeq ( \mathbf Z/m \mathbf Z ) ^ \times $ be its Galois group and $ \mathbf Z [ G ] $ the group ring of $ G $ (cf. also Group algebra; Cross product) over the rational integers $ \mathbf Z $. They act on ideals and on the ideal class group $ C $ of $ K _ {m} $ (cf. Class field theory). The Stickelberger ideal $ S $ is an ideal in $ \mathbf Z [ G ] $ annihilating $ C $ and related with the relative class number $ h ^ {-} $ of $ K _ {m} $. It is defined as follows.

Let $ O $ be the ring of integers of $ K _ {m} $ and $ \mathfrak p $ a prime ideal of $ O $ that is prime to $ m $. Let $ p $ be a prime integer satisfying $ ( p ) = \mathfrak p \cap \mathbf Z $ and let $ \mathbf F _ {p} = \mathbf Z/p \mathbf Z $ be the prime field. Define a mapping $ {\psi _ {0} } : {\mathbf F _ {p} } \rightarrow {\mathbf C ^ \times = \mathbf C \setminus \{ 0 \} } $ by

$$ \psi _ {0} ( a ) = { \mathop{\rm exp} } \left ( { \frac{2 \pi i }{p} } a \right ) , $$

where $ \mathbf C $ is the complex number field. Let $ F = O/ \mathfrak p $ be the residue field and define $ {\psi _ {\mathfrak p} } : F \rightarrow {\mathbf C ^ \times } $ by composition of $ \psi _ {0} $ and the trace mapping $ T : F \rightarrow {\mathbf F _ {p} } $, i.e., $ \psi _ {\mathfrak p} = \psi _ {0} \circ T $. Let $ W _ {m} $ be the group of unities in $ K _ {m} $. Then there is an injection

$$ W _ {m} \rightarrow O \setminus \mathfrak p \rightarrow ( O/ \mathfrak p ) ^ \times = F ^ \times , $$

so that $ m $ divides $ q - 1 $ with $ q = N ( \mathfrak p ) = | F | $. This induces a bijection $ f : {W _ {m} } \rightarrow {( F ^ \times ) ^ {( q - 1 ) /m } } $. Define a character $ {\chi _ {\mathfrak p} } : {F ^ \times } \rightarrow {W _ {m} } $ of order $ m $ by

$$ \chi _ {\mathfrak p} ( x ) = f ^ {- 1 } ( x ^ {( q - 1 ) /m } ) $$

for $ x \in F ^ \times $. One can now make up the Gauss sum

$$ g _ {a} ( \mathfrak p ) = - \sum _ {x \in F ^ \times } \chi _ {\mathfrak p} ( x ) ^ {a} \cdot \psi _ {\mathfrak p} ( x ) $$

for $ a \in \mathbf Z $. For a real number $ x $, let $ \langle x \rangle $ be the number uniquely determined by $ x \equiv \langle x \rangle ( { \mathop{\rm mod} } \mathbf Z ) $ and $ 0 \leq \langle x \rangle < 1 $. For $ t ( { \mathop{\rm mod} } m ) $ with $ { \mathop{\rm gcd} } ( t,m ) = 1 $, let $ \sigma _ {t} $ be the element of $ G $ corresponding to $ t ( { \mathop{\rm mod} } m ) $ by $ G \simeq ( \mathbf Z/m \mathbf Z ) ^ \times $. For $ a \in \mathbf Z $, let $ \theta ( a ) \in \mathbf Q [ G ] $ be the element

$$ \theta ( a ) = \sum _ {t ( { \mathop{\rm mod} } m ) } \left \langle {- { \frac{at }{m} } } \right \rangle \sigma _ {t} ^ {- 1 } . $$

L. Stickelberger proved the following theorem: For $ r \geq 1 $, $ a _ {1} \dots a _ {r} ,b _ {1} \dots b _ {r} \in \mathbf Z $ one has $ \sum _ {i = 1 } ^ {r} a _ {i} \theta ( b _ {i} ) \in \mathbf Z [ G ] $ if and only if $ \sum a _ {i} b _ {i} \equiv 0 ( { \mathop{\rm mod} } m ) $. In this case, for any prime ideal $ \mathfrak p $ prime to $ m $ one has $ \prod _ {i = 1 } ^ {m} g _ {b _ {i} } ( \mathfrak p ) ^ {a _ {i} } \in K _ {m} $ and $ \mathfrak p ^ {\sum _ {i = 1 } ^ {r} a _ {i} \theta ( b _ {i} ) } $ is the principal ideal generated by $ \prod _ {i = 1 } ^ {m} g _ {b _ {i} } ( \mathfrak p ) ^ {a _ {i} } $.

The ideal $ S = \{ {\sum _ {i = 1 } ^ {r} a _ {i} \theta ( b _ {i} ) } : {\sum a _ {i} b _ {i} \equiv 0 ( { \mathop{\rm mod} } m ) } \} $ in $ \mathbf Z [ G ] $ is called the Stickelberger ideal for $ K _ {m} $, and an element of $ S $ is called a Stickelberger operator for $ K _ {m} $. Since any class of $ C $ contains a prime ideal $ \mathfrak p $ prime to $ m $, Stickelberger's theorem implies that $ S $ annihilates $ C $: $ S \cdot C = 0 $.

For a $ \mathbf Z [ G ] $-module $ A $, one defines $ A ^ {-} = \{ {a \in A } : {( 1 + J ) a = 0 } \} $, where $ J = \sigma _ {- 1 } $ corresponds to complex conjugation.

Let $ g $ be the number of primes that ramify in $ K _ {m} $. Now,

1) if $ g = 1 $, then $ [ \mathbf Z [ G ] ^ {-} :S ^ {-} ] = h ^ {-} $, where $ h ^ {-} $ is the relative class number of $ K _ {m} $ (Iwasawa's theorem);

2) if $ g \geq 2 $, then $ [ \mathbf Z [ G ] ^ {-} :S ^ {-} ] = 2 ^ {a} \cdot h ^ {-} $, where $ a = 2 ^ {g - 2 } - 1 $ (Sinnott's theorem).

These results have, to some extent, been generalized to absolute Abelian fields. Stickelberger ideals are also used to construct a $ p $-adic $ L $-function [a3].

References

[a1] L. Stickelberger, "Über eine Verallgemeinerung der Kreistheilung" Math. Ann. , 37 (1890) pp. 321–367
[a2] K. Iwasawa, "A class number formula for cyclotomic fields" Ann. of Math. (2) , 76 (1962) pp. 171–179
[a3] K. Iwasawa, "Lectures on -adic -functions" , Ann. Math. Studies , 74 , Princeton Univ. Press (1972)
[a4] W. Sinnott, "On the Stickelberger ideal and the circular units of a cyclotomic field" Ann. of Math. (2) , 108 (1978) pp. 107–134
[a5] W. Sinnott, "On the Stickelberger ideal and the circular units of an abelian field" Invent. Math. , 62 (1980/1) pp. 181–234
[a6] T. Kimura, K. Horie, "On the Stickelberger ideal and the relative class number" Trans. Amer. Math. Soc. , 302 (1987) pp. 727–739
[a7] S. Lang, "Cyclotomic fields" , 1–2 , Springer (1990)
[a8] L.C. Washington, "Introduction to cyclotomic fields" , Springer (1982)
How to Cite This Entry:
Stickelberger ideal. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stickelberger_ideal&oldid=18373
This article was adapted from an original article by T. Kimura (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article