Namespaces
Variants
Actions

Stepanov theorem

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 26B05 Secondary: 26B35 [MSN][ZBL]

A theorem proved by Stepanov about the differentiability of Lipschitz functions .

Theorem Let $E\subset \mathbb R^m$ be measurable and $f: E \to \mathbb R^n$ a measurable function. Then $f$ is a.e. differentiable on the set \[ \left\{x\in E: \limsup_{y\to x} \frac{|f(x)-f(y)|}{|x-y|} < \infty \right\}\, . \]

For a proof see Theorem 3.1.9 of [Fe]. Stepanov's theorem can be easily concluded from Rademacher's theorem. This is classically done through Lebesgue's density theorem, cf. Theorem 1 in Density of a set, but there is a an elementary derivation by Maly, see [Ma]. The measurability assumption can be dropped.

References

[EG] L.C. Evans, R.F. Gariepy, "Measure theory and fine properties of functions" Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. MR1158660 Zbl 0804.2800
[Fe] H. Federer, "Geometric measure theory". Volume 153 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York Inc., New York, 1969. MR0257325 Zbl 0874.49001
[Ma] J. Maly, A simple proof of the Stepanov theorem on differentiability almost everywhere. Exposition. Math. 17 (1999), no. 1, 59–61. MR1687460
How to Cite This Entry:
Stepanov theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stepanov_theorem&oldid=32319