Namespaces
Variants
Actions

Spherical functions

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


solid spherical harmonics, associated Legendre functions of the first and second kinds

Two linearly independent solutions $ P _ \nu ^ \mu ( z) $ and $ Q _ \nu ^ \mu ( z) $ of the differential equation

$$ ( 1- z) ^ {2} \frac{d ^ {2} y }{dz ^ {2} } - 2z \frac{dy}{dz} + \left [ \nu ( \nu + 1) - \frac{\mu ^ {2} }{1- z ^ {2} } \right ] = 0, $$

where $ \mu $ and $ \nu $ are complex constants, which arises in the solution of a class of partial differential equations by the method of separation of variables (cf. Separation of variables, method of). The points $ z = \pm 1 , \infty $ are branching points of the solutions, in general. The spherical functions are particular cases of the hypergeometric functions (cf. Hypergeometric function):

$$ P _ \nu ^ \mu ( z) = \frac{1}{\Gamma ( 1- \mu ) } \left ( z+ \frac{1}{z-} 1 \right ) ^ {\mu /2 } {} _ {2} F _ {1} \left ( - \nu , \nu + 1; 1- \mu ; 1- \frac{z}{2} \right ) $$

$$ \left ( \mathop{\rm arg} z+ \frac{1}{z-} 1 = 0 \ \textrm{ if } \mathop{\rm Im} z = 0, z > 1 \right ) , $$

$$ Q _ \nu ^ \mu ( z) = \frac{e ^ {\mu \pi i } \sqrt \pi \Gamma ( \mu + \nu + 1) }{2 ^ {\nu + 1 } \Gamma ( \nu + 3/2) } \frac{( z ^ {2} - 1) ^ {\mu /2 } }{z ^ {\mu + \nu + 1 } } \times $$

$$ \times {} _ {2} F _ {1} \left ( \frac{\mu + \nu + 1 }{2} , \frac{\mu + \nu + 2 }{2} ; \nu + \frac{3}{2} ; \frac{1}{z ^ {2} } \right ) $$

$$ \textrm{ ( } \mathop{\rm arg} z = 0 \ \textrm{ if } \mathop{\rm Im} z = 0, z > 0; $$

$$ \mathop{\rm arg} ( z ^ {2} - 1) = 0 \ \textrm{ if } \mathop{\rm Im} z = 0, z > 1 \textrm{ ) }. $$

The spherical functions $ P _ \nu ^ \mu ( z) $ and $ Q _ \nu ^ \mu ( z) $ are defined and single-valued in the domains $ | 1- z |< 2 $ and $ | z | > 1 $, respectively, of the complex plane cut by the real axis from $ - \infty $ to $ + 1 $.

If $ \mathop{\rm Im} z = 0 $, $ z = x $, $ - 1 < x < 1 $, then the following functions are usually taken as solutions:

$$ P _ \nu ^ \mu ( z) = \frac{1}{2} [ e ^ {\mu \pi i/2 } P _ \nu ^ \mu ( x+ i0) + e ^ {- \mu \pi i/2 } P _ \nu ^ \mu ( x- i0) ] = $$

$$ = \ \frac{1}{\Gamma ( 1- \mu ) } \left ( 1+ \frac{x}{1-} x \right ) ^ {\mu /2 } {} _ {2} F _ {1} \left ( - \nu , \nu + 1 ; 1- \mu ; 1- \frac{x}{2} \right ) , $$

$$ Q _ \nu ^ \mu ( z) = \frac{1}{2} e ^ {\mu \pi i } [ e ^ {- \mu \pi i/2 } Q _ \nu ^ \mu ( x+ i0) + e ^ {\mu \pi i/2 } Q _ \nu ^ \mu ( x- i0) ] = $$

$$ = \ \frac \pi {2 \sin \mu \pi } \left [ \cos \mu \pi P _ \nu ^ \mu ( x) - \frac{\Gamma ( \nu + \mu + 1) }{\Gamma ( \nu - \mu + 1) } P _ \nu ^ {- \mu } ( x) \right ] , $$

where $ f( x+ i0) $ $ ( f( x- i0)) $ are the values of the function $ f( z) $ on the upper (lower) boundary of the cut.

When $ \mu = 0 $, $ \nu = n = 0, 1 \dots $ $ P _ {n} ( z) \equiv P _ {n} ^ {0} ( z) $ are the Legendre polynomials. For zonal spherical functions see Spherical harmonics.

References

[1] H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , Higher transcendental functions , 2. Bessel functions, parabolic cylinder functions, orthogonal polynomials , McGraw-Hill (1953)
[2] E. Jahnke, F. Emde, "Tables of functions with formulae and curves" , Dover, reprint (1945) (Translated from German)
[3] E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6
[4] A. Krazer, W. Franz, "Transzendente Funktionen" , Akademie Verlag (1960)
[5] E.W. Hobson, "The theory of spherical and ellipsoidal harmonics" , Chelsea, reprint (1955)

Comments

A more common usage of the phrase "spherical function" is as follows.

Let $ G $ be a unimodular locally compact group and $ K $ a subgroup of $ G $. Let $ \pi $ be an irreducible unitary representation of $ G $ on a Hilbert space $ {\mathcal H} $ such that the $ K $- fixed vectors in $ {\mathcal H} $ form a one-dimensional subspace, spanned by a unit vector $ e $. Then the $ K $- bi-invariant function $ \phi $ on $ G $ defined by $ \phi ( x) = ( e, \pi ( x) e) $ is called a spherical function. Sometimes $ \phi $ is called a zonal spherical function, while the functions $ x \rightarrow ( v, \pi ( x) e) $( $ v \in {\mathcal H} $) are also called spherical functions. Some authors call $ \phi $ an elementary spherical function, while all $ K $- bi-invariant functions on $ G $ are called spherical functions.

The pair $ ( G, K) $ is a Gel'fand pair if, for all irreducible unitary representations of $ G $, the subspace of $ K $- fixed vectors in the representation space has dimension $ 1 $ or $ 0 $. This is equivalent to the commutativity of the convolution algebra $ C _ {c} ( K \setminus G/K) $ of $ K $- bi-invariant continuous functions on $ G $ with compact support. Now spherical functions are more generally defined as solutions $ \phi $, not identically zero, of the functional equation

$$ \tag{* } \phi ( x) \phi ( y) = \int\limits _ { K } \phi ( xky) dk,\ x, y \in G, $$

where $ dk $ is the normalized Haar measure on $ K $. These solutions include the spherical functions associated with irreducible unitary representations. Other solutions may be associated with irreducible non-unitary representations of $ G $. The characters of the comutative algebra $ C _ {c} ( K \setminus G/K) $ are precisely the mappings $ f \rightarrow \int _ {G} f( x) \phi ( x) dx $, where $ dx $ is Haar measure on $ G $ and $ \phi $ is a solution of (*).

If $ G $ is, moreover, a connected Lie group, then $ ( G, K) $ is a Gel'fand pair if and only if the algebra $ {\mathcal D} ( G/K) $ of $ G $- invariant differential operators on the homogeneous space $ G/K $ is commutative. Then $ \phi $ is a solution of (*) if and only if it is $ K $- bi-invariant, $ C ^ \infty $, $ \phi ( e)= 1 $, and the function $ xK \rightarrow \phi ( x) $ on $ G/K $ is a joint eigenfunction of the elements of $ {\mathcal D} ( G/K) $. In particular, if $ G $ is a connected real semi-simple LIe group and $ K $ is a maximal compact subgroup, then $ ( G, K) $ is a Gel'fand pair, $ G/K $ is a Riemannian symmetric space, and much information is available about $ {\mathcal D} ( G/K) $ and the sperical functions.

References

[a1] J. Fauraut, "Analyse harmonique sur les paires de Gelfand et les espaces hyperboliques" , Anal. Harmonique , CIMPA (1982) pp. 315–446
[a2] I.M. Gel'fand, "Spherical functions on symmetric spaces" Transl. Amer. Math. Soc. , 37 (1964) pp. 39–44 Dokl. Akad. Nauk SSSR , 70 (1950) pp. 5–8
[a3] R. Godement, "Introduction aux traveaux de A. Selberg" Sem. Bourbaki , 144 (1957)
[a4] S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4
How to Cite This Entry:
Spherical functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spherical_functions&oldid=48775
This article was adapted from an original article by Yu.A. BrychkovA.P. Prudnikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article