Namespaces
Variants
Actions

Sesquipower

From Encyclopedia of Mathematics
Revision as of 19:19, 10 June 2016 by Richard Pinch (talk | contribs) (Start article: Sesquipower)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

2020 Mathematics Subject Classification: Primary: 68R15 [MSN][ZBL]

A sesquipower or Zimin word is a string over an alphabet with identical prefix and suffix. Sesquipowers are unavoidable patterns, in the sense that all sufficiently long strings contain one.

Formally, let $A$ be an alphabet and $A^*$ be the free monoid of finite strings over $A$. Every non-empty word $w$ in $A^+$ is a sesquipower of order 1. If $u$ is a sequipower of order $n$ then any word $w = uvu$ is a sesquipower of order $n+1$.[1] The degree of a non-empty word $w$ is the largest integer $d$ such that $w$ is a sesquipower of order $d$'.[2]

A bi-ideal sequence is a sequence of words $f_i$ where $f_1 \in A^+$ and $$ f_{i+1} = f_i g_i f_i $$ for some $g_i \in A^*$ and $i \ge 1$. The degree of a word $w$ is thus the length of the longest bi-ideal sequence ending in $w$.[2]

For a finite alphabet $A$ on $k$ letters, there is an integer $M$, depending on $k$ and $n$, such that any word of length $M$ has a factor which is a sesquipower of order at least $n$. We express this by saying that the sesquipowers are unavoidable patterns.[3][4]

Given an infinite bi-ideal sequence, we note that each $f_i$ is a prefix of $f_{i+1}$ and so the $f_i$ converge to an infinite sequence $$ f = f_1 g_1 f_2 g_2 \cdots \ . $$

We define an infinite word to be a sesquipower if is the limit of an infinite bi-ideal sequence.[5] An infinite word is a sesquipower if and only if it is a recurrent word,[5][6] that is, every factor occurs infinitely often.[7]

Fix a finite alphabet $A$ and assume a total order on the letters. For given integers $p$ and $n$, every sufficiently long word in $A^*$ has either a factor which is a $p$-power or a factor which is an $n$-sesquipower; in the latter case the factor has an $n$-factorisation into Lyndon words.[6]

References

  • Berstel, Jean; Lauve, Aaron; Reutenauer, Christophe; Saliola, Franco V.; "Combinatorics on words. Christoffel words and repetitions in words", CRM Monograph Series 27, American Mathematical Society (2009) ISBN 978-0-8218-4480-9 Zbl 1161.68043
  • Lothaire, M.; "Algebraic combinatorics on words", Encyclopedia of Mathematics and Its Applications 90 Cambridge University Press (2011) ISBN 978-0-521-18071-9 Zbl 1221.68183
  • Pytheas Fogg, N.; "Substitutions in dynamics, arithmetics and combinatorics", Lecture Notes in Mathematics 1794 Springer-Verlag (2002) ISBN 3-540-44141-7 Zbl 1014.11015
  • Sapir, Mark V., "Combinatorial algebra: syntax and semantics" Springer Verlag (2014) ISBN 978-3-319-08030-7
  • Lothaire (2011) p. 135
  • 2.0 2.1 Lothaire (2011) p. 136
  • Lothaire (2011) p. 137
  • Berstel et al (2009) p.132
  • 5.0 5.1 Lothiare (2011) p. 141
  • 6.0 6.1 Berstel et al (2009) p.133
  • Lothaire (2011) p. 30
  • How to Cite This Entry:
    Sesquipower. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sesquipower&oldid=38954