Namespaces
Variants
Actions

Difference between revisions of "Semi-continuous summation method"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(latex details)
 
Line 11: Line 11:
 
{{TEX|done}}
 
{{TEX|done}}
  
A summation method (cf. [[Summation methods|Summation methods]]) for series and sequences, defined by means of sequences of functions. Let  $  \{ a _ {k} ( \omega ) \} $,  
+
A summation method (cf. [[Summation methods]]) for series and sequences, defined by means of sequences of functions. Let  $  \{ a _ {k} ( \omega ) \} $,  
 
$  k = 0 , 1 \dots $
 
$  k = 0 , 1 \dots $
 
be a sequence of functions defined on some set  $  E $
 
be a sequence of functions defined on some set  $  E $
 
of variation of the parameter  $  \omega $,  
 
of variation of the parameter  $  \omega $,  
 
and let  $  \omega _ {0} $
 
and let  $  \omega _ {0} $
be an [[Accumulation point|accumulation point]] of  $  E $(
+
be an [[accumulation point]] of  $  E $(
 
finite or infinite). The functions  $  a _ {k} ( \omega ) $
 
finite or infinite). The functions  $  a _ {k} ( \omega ) $
 
are used to convert a given sequence  $  \{ s _ {n} \} $
 
are used to convert a given sequence  $  \{ s _ {n} \} $
Line 22: Line 22:
  
 
$$ \tag{1 }
 
$$ \tag{1 }
\sigma ( \omega )  =  \sum _ { k= } 0 ^  \infty   
+
\sigma ( \omega )  =  \sum _ {k=0} ^  \infty  a _ {k} ( \omega ) s _ {k} .
a _ {k} ( \omega ) s _ {k} .
 
 
$$
 
$$
  
Line 41: Line 40:
  
 
$$ \tag{2 }
 
$$ \tag{2 }
\sum _ { k= } 0 ^  \infty  u _ {k} ,
+
\sum _ {k=0} ^  \infty  u _ {k} ,
 
$$
 
$$
  
 
one says that the series (2) is summable by the semi-continuous method to  $  s $.  
 
one says that the series (2) is summable by the semi-continuous method to  $  s $.  
 
A semi-continuous summation method with  $  \omega _ {0} = \infty $
 
A semi-continuous summation method with  $  \omega _ {0} = \infty $
is an analogue of the [[Matrix summation method|matrix summation method]] defined by the matrix  $  \| a _ {nk} \| $,  
+
is an analogue of the [[matrix summation method]] defined by the matrix  $  \| a _ {nk} \| $,  
 
in which the integer-valued parameter  $  n $
 
in which the integer-valued parameter  $  n $
 
is replaced by the continuous parameter  $  \omega $.  
 
is replaced by the continuous parameter  $  \omega $.  
Line 55: Line 54:
  
 
$$ \tag{3 }
 
$$ \tag{3 }
\gamma ( \omega )  =  \sum _ { k= } 0 ^  \infty  g _ {k} ( \omega ) u _ {k} .
+
\gamma ( \omega )  =  \sum _ {k=0} ^  \infty  g _ {k} ( \omega ) u _ {k} .
 
$$
 
$$
  
Line 71: Line 70:
 
sufficiently close to  $  \omega _ {0} $.
 
sufficiently close to  $  \omega _ {0} $.
  
In some cases a semi-continuous summation method is more convenient than a summation method based on ordinary matrices, since it enables one to utilize tools of function theory. Examples of semi-continuous summation methods are: the [[Abel summation method|Abel summation method]], the [[Borel summation method|Borel summation method]], the [[Lindelöf summation method|Lindelöf summation method]], and the [[Mittag-Leffler summation method|Mittag-Leffler summation method]]. The class of semi-continuous methods also includes methods with semi-continuous matrices of the form
+
In some cases, a semi-continuous summation method is more convenient than a summation method based on ordinary matrices, since it enables one to utilize tools of function theory. Examples of semi-continuous summation methods are: the [[Abel summation method]], the [[Borel summation method]], the [[Lindelöf summation method|Lindelöf summation method]], and the [[Mittag-Leffler summation method|Mittag-Leffler summation method]]. The class of semi-continuous methods also includes methods with semi-continuous matrices of the form
  
 
$$  
 
$$  
 
a _ {k} ( \omega )  =   
 
a _ {k} ( \omega )  =   
\frac{p _ {k} \omega  ^ {k} }{\sum _ { l= } 0 ^  \infty   
+
\frac{p _ {k} \omega  ^ {k} }{\sum _ {l=0}^  \infty   
 
p _ {l} \omega  ^ {l} }
 
p _ {l} \omega  ^ {l} }
 
  ,
 
  ,
Line 85: Line 84:
  
 
$$  
 
$$  
\sum _ { k= } 0 ^  \infty  | a _ {k} ( \omega ) |  \leq  M
+
\sum _ {k=0} ^  \infty  | a _ {k} ( \omega ) |  \leq  M
 
$$
 
$$
  
Line 97: Line 96:
  
 
$$  
 
$$  
\lim\limits _ {\omega \rightarrow \omega _ {0} }  \sum _ { k= } 0 ^  \infty  a _ {k} ( \omega )  =  1
+
\lim\limits _ {\omega \rightarrow \omega _ {0} }  \sum _ {k=0} ^  \infty  a _ {k} ( \omega )  =  1
 
$$
 
$$
  
Line 104: Line 103:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.H. Hardy,  "Divergent series" , Clarendon Press  (1949)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R.G. Cooke,  "Infinite matrices and sequence spaces" , Macmillan  (1950)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  W. Beekmann,  K. Zeller,  "Theorie der Limitierungsverfahren" , Springer  (1970)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  G.H. Hardy,  "Divergent series" , Clarendon Press  (1949)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R.G. Cooke,  "Infinite matrices and sequence spaces" , Macmillan  (1950)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  W. Beekmann,  K. Zeller,  "Theorie der Limitierungsverfahren" , Springer  (1970)</TD></TR>
 +
</table>

Latest revision as of 08:21, 6 January 2024


A summation method (cf. Summation methods) for series and sequences, defined by means of sequences of functions. Let $ \{ a _ {k} ( \omega ) \} $, $ k = 0 , 1 \dots $ be a sequence of functions defined on some set $ E $ of variation of the parameter $ \omega $, and let $ \omega _ {0} $ be an accumulation point of $ E $( finite or infinite). The functions $ a _ {k} ( \omega ) $ are used to convert a given sequence $ \{ s _ {n} \} $ into a function $ \sigma ( \omega ) $:

$$ \tag{1 } \sigma ( \omega ) = \sum _ {k=0} ^ \infty a _ {k} ( \omega ) s _ {k} . $$

If the series in (1) is convergent for all $ \omega $ sufficiently close to $ \omega _ {0} $, and if

$$ \lim\limits _ {\omega \rightarrow \omega _ {0} } \sigma ( \omega ) = s , $$

one says that the sequence $ \{ s _ {n} \} $ is summable to $ s $ by the semi-continuous summation method defined by the sequence $ \{ a _ {k} ( \omega ) \} $. If $ \{ s _ {n} \} $ is the sequence of partial sums of the series

$$ \tag{2 } \sum _ {k=0} ^ \infty u _ {k} , $$

one says that the series (2) is summable by the semi-continuous method to $ s $. A semi-continuous summation method with $ \omega _ {0} = \infty $ is an analogue of the matrix summation method defined by the matrix $ \| a _ {nk} \| $, in which the integer-valued parameter $ n $ is replaced by the continuous parameter $ \omega $. The sequence of functions $ a _ {k} ( \omega ) $ is therefore known as a semi-continuous matrix.

A semi-continuous summation method can be defined by direct transformation of a series into a function, using a given sequence of functions, say $ \{ g _ {k} ( \omega ) \} $:

$$ \tag{3 } \gamma ( \omega ) = \sum _ {k=0} ^ \infty g _ {k} ( \omega ) u _ {k} . $$

In this case the series (2) is said to be summable to $ s $ if

$$ \lim\limits _ {\omega \rightarrow \omega _ {0} } \gamma ( \omega ) = s , $$

where $ \omega _ {0} $ is an accumulation point of the set $ E $ of variation of $ \omega $, and the series (3) is assumed to be convergent for all $ \omega $ sufficiently close to $ \omega _ {0} $.

In some cases, a semi-continuous summation method is more convenient than a summation method based on ordinary matrices, since it enables one to utilize tools of function theory. Examples of semi-continuous summation methods are: the Abel summation method, the Borel summation method, the Lindelöf summation method, and the Mittag-Leffler summation method. The class of semi-continuous methods also includes methods with semi-continuous matrices of the form

$$ a _ {k} ( \omega ) = \frac{p _ {k} \omega ^ {k} }{\sum _ {l=0}^ \infty p _ {l} \omega ^ {l} } , $$

where the denominator is an entire function that does not reduce to a polynomial.

Conditions for the regularity of semi-continuous summation methods are analogous to regularity conditions for matrix summation methods. For example, the conditions

$$ \sum _ {k=0} ^ \infty | a _ {k} ( \omega ) | \leq M $$

for all $ \omega $ sufficiently close to $ \omega _ {0} $,

$$ \lim\limits _ {\omega \rightarrow \omega _ {0} } a _ {k} ( \omega ) = 0 ,\ \ k = 0 , 1 \dots $$

$$ \lim\limits _ {\omega \rightarrow \omega _ {0} } \sum _ {k=0} ^ \infty a _ {k} ( \omega ) = 1 $$

are necessary and sufficient for the semi-continuous summation method defined by the transformation (1) of $ \{ s _ {k} \} $ into a function to be regular (see Regularity criteria).

References

[1] G.H. Hardy, "Divergent series" , Clarendon Press (1949)
[2] R.G. Cooke, "Infinite matrices and sequence spaces" , Macmillan (1950)
[3] W. Beekmann, K. Zeller, "Theorie der Limitierungsverfahren" , Springer (1970)
How to Cite This Entry:
Semi-continuous summation method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Semi-continuous_summation_method&oldid=48657
This article was adapted from an original article by I.I. Volkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article