# Reproducing kernel

The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Consider an abstract set $E$ and a linear set $F$ of functions $f : E \rightarrow \mathbf{C}$.

Assume that $F$ is equipped with an inner product $( f , g )$ and $F$ is complete with respect to the norm $\| f \| = ( f , f ) ^ { 1 / 2 }$. Then $F$ is a Hilbert space.

A function $K ( x , y )$, $x , y \in E$, is called a reproducing kernel of such a Hilbert space $H$ if and only if the following two conditions are satisfied:

i) for every fixed $y \in E$, the function $K ( x , y ) \in H$;

ii) $( f ( x ) , K ( x , y ) ) = f ( y )$, $\forall f \in H$.

Some properties of reproducing kernels are:

1) If a reproducing kernel $K ( x , y )$ exists, then it is unique.

2) A reproducing kernel $K ( x , y )$ exists if and only if $| f ( y ) | \leq c ( y ) \| f \|$, $\forall f \in H$, where $c ( y ) = \| K ( . , y ) \|$.

3) $K ( x , y )$ is a non-negative-definite kernel, that is,

\begin{equation*} \sum _ { i , j = 1 } ^ { n } K ( x _ { i } , x _ { j } ) t _ { j } \overline { t } _ { i } \geq 0 , \forall x _ { i } , y _ { j } \in E , \forall t \in {\bf C} ^ { n }, \end{equation*}

where the overbar stands for complex conjugation.

In particular, 3) implies:

\begin{equation*} K ( x , y ) = \overline { K ( y , x ) } , K ( x , x ) \geq 0, \end{equation*}

\begin{equation*} | K ( x , y ) | ^ { 2 } \leq K ( x , x ) K ( y , y ). \end{equation*}

Every non-negative-definite kernel $K ( x , y )$ generates a Hilbert space $H _ { K }$ for which $K ( x , y )$ is a reproducing kernel (see also Reproducing-kernel Hilbert space).

If $K ( x , y )$ is a reproducing kernel, then the operator $K f : = ( K f ) ( \cdot ) = ( f , K ( x , ) ) = f ( \cdot )$ is injective: $K f = 0$ implies $f = 0$, by reproducing property ii), and $K : H \rightarrow H$ is surjective (cf. also Injection; Surjection). Therefore the inverse operator $K ^ { - 1 }$ is defined on $R ( K ) = H$, and since $K f = f$, the operator $K$ is the identity operator on $H _ { K }$, and so is its inverse.

## Examples of reproducing kernels.

Consider the Hilbert space $H$ of analytic functions (cf. Analytic function) in a bounded simply-connected domain $D$ of the complex $z$-plane. If $f ( z )$ is analytic in $D$, $z _ { 0 } \in D$, and the disc $D _ { z _ { 0 } , r } : = \{ z : | z - z _ { 0 } | \leq r \} \in D$, then

\begin{equation*} | f ( z _ { 0 } ) | ^ { 2 } \leq \frac { 1 } { \pi r ^ { 2 } } \int _ { D _ { z _ { 0 } , r } } | f ( \zeta ) | ^ { 2 } d x d y \leq \frac { 1 } { \pi r ^ { 2 } } ( f , f ) _ { L^2(D) }. \end{equation*}

Therefore $H$ is a reproducing-kernel Hilbert space. Its reproducing kernel $K _ { D } ( z , \zeta )$ is called the Bergman kernel (cf. also Bergman kernel function).

If $\{ \phi_j ( z ) \}$ is an orthonormal basis of $H$ (cf. also Orthogonal system; Basis), $\phi _ { j } \in H$, then $K _ { D } ( z , \zeta ) = \sum _ { j = 1 } ^ { \infty } \phi _ { j } ( z ) \overline { \phi _ { j } ( \zeta ) }$.

If $w = f ( z , z_0 )$ is the conformal mapping of $D$ onto the disc $| w | \leq \rho _ { D }$, such that $f ( z , z _ { 0 } ) = 0$, $f ^ { \prime } ( z _ { 0 } , z _ { 0 } ) = 1$, then [a2]:

\begin{equation*} f ( z , z_0 ) = \frac { 1 } { K _ { D } ( z_0 , z _ { 0 } ) } \int _ { z _ { 0 } } ^ { z } K _ { D } ( t , z _ { 0 } ) d t. \end{equation*}

Let $T$ be a domain in ${\bf R} ^ { n }$ and $h ( t , p ) \in L ^ { 2 } ( T , d m )$ for every $p \in E$. Here $m ( t ) > 0$ is a finite measure on $T$.

Define a linear mapping $L : L ^ { 2 } ( T , d m ) \rightarrow F$ by

$$\tag{a1} f ( p ) = L g : = \int _ { T } g ( t ) \overline { h ( t , p ) } d m ( t ).$$

Define the kernel

$$\tag{a2} K ( p , q ) : = \int _ { T } h ( t , q ) \overline { h ( t , p ) } d m ( t ) , p , q \in E.$$

This kernel is non-negative-definite:

\begin{equation*} \sum _ { i , j + 1 } ^ { n } K ( p _ { i } , p _ { j } ) \xi _ { j } \overline { \xi _ { i } } = \int _ { T } | \sum _ { j = 1 } ^ { n } \xi _ { j } h ( t , p _ { j } ) | ^ { 2 } d m ( t ) > 0 \end{equation*}

\begin{equation*} \xi \neq 0, \end{equation*}

provided that for any set $\{ p _ { 1 } , \dots , p _ { n } \} \in E$ the set of functions $\{ h ( t , p _ { j } ) \} _ { 1 \leq j \leq n}$ is linearly independent in $L ^ { 2 } ( T , d m )$ (cf. Linear independence).

In this case the kernel $K ( p , q )$ generates a uniquely determined reproducing-kernel Hilbert space $H _ { K }$ for which $K ( p , q )$ is the reproducing kernel.

In [a6] it is claimed that a convenient characterization of the range $R ( L )$ of the linear transformation (a1) is given by the formula $R ( L ) = H _ { K }$. In [a4] it is shown by examples that such a characterization is often useless in practice: in general the norm in $H _ { K }$ can not be described in terms of the standard Sobolev or Hölder norms, and the assumption in [a6] that $H _ { K }$ can be realized as $L ^ { 2 } ( E , d \mu )$ is not justified and is not correct, in general.

However, in [a6] there are some examples of characterizations of $H _ { K }$ for some special operators $L$ and in [a5] a characterization of the range of a wide class of multi-dimensional linear transforms, whose kernels are kernels of positive rational functions of self-adjoint elliptic operators, is given.

Reproducing kernels are discussed in [a5] for rigged triples of Hilbert spaces (cf. also Rigged Hilbert space). If $H _ { 0 }$ is a Hilbert space and $A > 0$ is a linear compact operator defined on all of $H$, then the closure of $H _ { 0 }$ in the norm $( A u , u ) ^ { 1 / 2 } = \| A ^ { 1 / 2 } u \|$ is a Hilbert space $H _ { - } \supset H _ { 0 }$. The space dual to $H_-$, with respect to $H _ { 0 }$, is denoted by $H _ { + }$, $H _ { + } \subset H _ { 0 } \subset H _ { - }$. The inner product in $H _ { + }$ is given by the formula $( u , v ) _ { + } = ( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } v ) _ { 0 }$. The space $H _ { + } = R ( A ^ { 1 / 2 } )$, equipped with this inner product, is a Hilbert space.

Let $A \varphi _ { j } = \lambda _ { j } \varphi _ { j }$, where the eigenvalues $\lambda_j$ are counted according to their multiplicities and $( \varphi_j , \varphi _ { m } ) _ { 0 } = \delta _ { j m }$, where $\delta _ { j m }$ is the Kronecker delta.

Assume that $| \varphi_j ( x ) | < c$ for all $j$ and all $x$, and $\Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty$.

Then $H _ { + }$ is a reproducing-kernel Hilbert space and its reproducing kernel is $K ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } \varphi _ { j } ( y ) \overline { \varphi _ { j } ( x ) }$.

To check that $K ( x , y )$ is indeed the reproducing kernel of $H _ { + }$, one calculates $( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } K ) _ { 0 } = ( u , A ^ { - 1 } K ) _ { 0 } = u ( y )$. Indeed, $A ^ { - 1 } K = I$ is the identity operator because $A u = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ( u , \varphi _ { j } ) \varphi _ { j } ( x )$, so that $K ( x , y )$ is the kernel of the operator $A$ in $H _ { 0 }$.

The value $u ( y )$ is a linear functional in $H _ { + }$, so that $H _ { + }$ is a reproducing-kernel Hilbert space. Indeed, if $u \in H _ { + }$, then $v : = A ^ { - 1 / 2 } u \in H _ { 0 }$. Therefore, denoting $v _ { j } : = ( v , \varphi _ { j } ) _ { 0 }$ and using the Cauchy inequality and Parseval equality one gets:

\begin{equation*} | u ( y ) | = \left| \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { 1 / 2 } v _ { j } \varphi _ { j } ( x ) \right| < c \Lambda \| v \| _ { 0 } = c \Lambda \| u \| _ { + }, \end{equation*}

as claimed.

From the representation of the inner product in the reproducing-kernel Hilbert space $H _ { + }$ by the formula $( u , v ) _ { + } = ( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } v ) _ { 0 }$ it is clear that, in general, the inner product in $H _ { + }$ is not an inner product in $L ^ { 2 } ( E , d \mu )$.

The inner product in $H _ { + }$ is of the form

\begin{equation*} ( u , v )_ + = \int _ { D } \int _ { D } B ( x , y ) u ( y ) \overline { v ( x ) } d y d x \;\text { if } H _ { 0 } = L ^ { 2 } ( D ), \end{equation*}

where the distributional kernel $B ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { - 1 } \varphi _ { j } ( x ) \overline { \varphi _ { j } ( y ) }$ acts on $u \in R ( A )$ by the formula $\int _ { D } B ( x , y ) u ( y ) d y = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { - 1 } ( u , \varphi _ { j } ) _ { 0 } \varphi _ { j } ( x )$, where $( u , \varphi _ { j } ) _ { 0 } : = \int _ { D } u ( y ) \overline { \varphi _ { j } ( y ) } d y$ is the Fourier coefficient of $u$ (cf. also Fourier coefficients). If $u \in R ( A )$, then $u = A w$ for some $w \in H _ { 0 }$, and $( u , \varphi_j ) = \lambda _ { j } w _ { j }$. Thus, the series $\sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { - 1 } ( u , \varphi_j ) _ { 0 } \varphi _ { j } ( x ) = \sum _ { j = 1 } ^ { \infty } w _ { j } \varphi _ { j } ( x ) = w ( x )$ converges in $H _ { 0 } = L ^ { 2 } ( D )$.

#### References

 [a1] N. Aronszajn, "Theory of reproducing kernels" Trans. Amer. Math. Soc. , 68 (1950) pp. 337–404 [a2] S. Bergman, "The kernel function and conformal mapping" , Amer. Math. Soc. (1950) [a3] A.G. Ramm, "On the theory of reproducing kernel Hilbert spaces" J. Inverse Ill-Posed Probl. , 6 : 5 (1998) pp. 515–520 [a4] A.G. Ramm, "On Saitoh's characterization of the range of linear transforms" A.G. Ramm (ed.) , Inverse Problems, Tomography and Image Processing , Plenum (1998) pp. 125–128 [a5] A.G. Ramm, "Random fields estimation theory" , Longman/Wiley (1990) [a6] S. Saitoh, "Integral transforms, reproducing kernels and their applications" , Pitman Res. Notes , Longman (1997) [a7] L. Schwartz, "Sous-espaces hilbertiens d'espaces vectoriels topologique et noyaux associés" Anal. Math. , 13 (1964) pp. 115–256
How to Cite This Entry:
Reproducing kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Reproducing_kernel&oldid=55377
This article was adapted from an original article by A.G. Ramm (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article