# Poisson summation formula

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The formula

$$\sum _ {k = - \infty } ^ { +\infty } g ( 2 k \pi ) = \ \sum _ {k = - \infty } ^ { +\infty } \frac{1}{2 \pi } \int\limits _ {- \infty } ^ { +\infty } g ( x) e ^ {- i k x } d x .$$

The Poisson summation formula holds if, for example, the function $g$ is absolutely integrable on the interval $( - \infty , + \infty )$, has bounded variation and $2 g ( x) = g ( x + 0 ) + g ( x - 0 )$. The Poisson summation formula can also be written in the form

$$\sqrt {a } \sum _ {k = - \infty } ^ { +\infty } g ( a k ) = \ \sqrt {b } \sum _ {k = - \infty } ^ { +\infty } \chi ( b k ) ,$$

where $a$ and $b$ are any two positive numbers satisfying the condition $a b = 2 \pi$, and $\chi$ is the Fourier transform of the function $g$:

$$\chi ( u) = \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \infty } ^ {+ \infty } g(x) e ^ {- i u x } d x .$$

#### References

 [1] A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) [2] E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948)
How to Cite This Entry:
Poisson summation formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poisson_summation_formula&oldid=55140
This article was adapted from an original article by I.I. Volkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article