Namespaces
Variants
Actions

Difference between revisions of "Number of divisors"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (better)
(gather refs)
Line 25: Line 25:
 
The function $\tau_k(n)$, which is the number of solutions of the equation $n = x_1\cdots x_k$ in natural numbers $x_1,\ldots,x_k$, is a generalization of the function $\tau$.
 
The function $\tau_k(n)$, which is the number of solutions of the equation $n = x_1\cdots x_k$ in natural numbers $x_1,\ldots,x_k$, is a generalization of the function $\tau$.
  
====References====
 
<table>
 
<TR><TD valign="top">[1]</TD> <TD valign="top">  I.M. Vinogradov,  "Elements of number theory" , Dover, reprint  (1954)  (Translated from Russian)</TD></TR>
 
<TR><TD valign="top">[2]</TD> <TD valign="top">  K. Prachar,  "Primzahlverteilung" , Springer  (1957)</TD></TR>
 
</table>
 
 
 
 
====Comments====
 
 
The [[Average order of an arithmetic function|average value]] of the number of divisors was obtained by P. Dirichlet in 1849, in the form
 
The [[Average order of an arithmetic function|average value]] of the number of divisors was obtained by P. Dirichlet in 1849, in the form
 
$$
 
$$
Line 41: Line 32:
 
====References====
 
====References====
 
<table>
 
<table>
<TR><TD valign="top">[a1]</TD> <TD valign="top"> G.H. Hardy,   E.M. Wright,   "An introduction to the theory of numbers" , Oxford Univ. Press  (1979)  pp. Chapt. XVI</TD></TR>
+
<TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top"> K. Prachar, "Primzahlverteilung" , Springer  (1957)</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top"> G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press  (1979)  pp. Chapt. XVI</TD></TR>
 
</table>
 
</table>

Revision as of 08:14, 4 November 2023

2020 Mathematics Subject Classification: Primary: 11A25 [MSN][ZBL]

of a natural number $n$

The number of natural divisors of the number $n$. This arithmetic function is denoted by $\tau(n)$ or $d(n)$. The following formula holds: $$ \tau(n) = (a_1+1) \cdots (a_k+1) $$ where $$ n = p_1^{a_1} \cdots p_k^{a_k} $$ is the canonical expansion of $n$ into prime power factors. For prime numbers $p$, $\tau(p) = 2$, but there exists an infinite sequence of $n$ for which $$ \tau(n) \ge 2^{1-\epsilon} \frac{\log n}{\log\log n}\,,\ \ \epsilon > 0 \ . $$

On the other hand, for all $\epsilon > 0$, $$ \tau(n) = O(n^\epsilon)\ . $$

$\tau$ is a multiplicative arithmetic function and is equal to the number of points with natural coordinates on the hyperbola $xy = n$. The average value of $\tau(n)$ is given by Dirichlet's asymptotic formula (cf. Divisor problems).

The function $\tau_k(n)$, which is the number of solutions of the equation $n = x_1\cdots x_k$ in natural numbers $x_1,\ldots,x_k$, is a generalization of the function $\tau$.

The average value of the number of divisors was obtained by P. Dirichlet in 1849, in the form $$ \sum_{n \le x} \tau(n) = x \log x + (2 \gamma - 1)x + O(\sqrt x) \ . $$

References

[1] I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)
[2] K. Prachar, "Primzahlverteilung" , Springer (1957)
[a1] G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) pp. Chapt. XVI
How to Cite This Entry:
Number of divisors. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Number_of_divisors&oldid=51004
This article was adapted from an original article by N.I. Klimov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article