Namespaces
Variants
Actions

Difference between revisions of "Non-linear operator"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n0671501.png" /> of a space (as a rule, a vector space) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n0671502.png" /> into a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n0671503.png" /> over a common field of scalars that does not have the property of linearity, that is, such that generally speaking
+
<!--
 +
n0671501.png
 +
$#A+1 = 188 n = 0
 +
$#C+1 = 188 : ~/encyclopedia/old_files/data/N067/N.0607150 Non\AAhlinear operator
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n0671504.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n0671505.png" /> is the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n0671506.png" /> of real or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n0671507.png" /> of complex numbers, then a non-linear operator is called a [[Non-linear functional|non-linear functional]]. The simplest example of a non-linear operator (non-linear functional) is a real-valued function of a real argument other than a linear function. One of the important sources of the origin of non-linear operators are problems in mathematical physics. If in a local mathematical description of a process small quantities not only of the first but also of higher orders are taken into account, then there arise equations with non-linear operators. Certain problems in mathematical economics, auto-regulation, control theory, etc., also lead to non-linear operator equations.
+
A mapping  $  A $
 +
of a space (as a rule, a vector space)  $  X $
 +
into a vector space  $  Y $
 +
over a common field of scalars that does not have the property of linearity, that is, such that generally speaking
 +
 
 +
$$
 +
A ( \alpha _ {1} x _ {1} + \alpha _ {2} x _ {2} )  \neq \
 +
\alpha _ {1} A x _ {1} + \alpha _ {2} A x _ {2} .
 +
$$
 +
 
 +
If $  Y $
 +
is the set $  \mathbf R $
 +
of real or $  \mathbf C $
 +
of complex numbers, then a non-linear operator is called a [[Non-linear functional|non-linear functional]]. The simplest example of a non-linear operator (non-linear functional) is a real-valued function of a real argument other than a linear function. One of the important sources of the origin of non-linear operators are problems in mathematical physics. If in a local mathematical description of a process small quantities not only of the first but also of higher orders are taken into account, then there arise equations with non-linear operators. Certain problems in mathematical economics, auto-regulation, control theory, etc., also lead to non-linear operator equations.
  
 
Examples of non-linear operators.
 
Examples of non-linear operators.
Line 9: Line 30:
 
1)
 
1)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n0671508.png" /></td> </tr></table>
+
$$
 +
Ax  = \int\limits _ { a } ^ { b }  K ( t , s , x ( s) )  ds,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n0671509.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715012.png" />, is a function such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715013.png" /> is continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715014.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715015.png" /> (for example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715016.png" /> is continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715019.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715020.png" /> is non-linear in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715021.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715022.png" /> is a non-linear Urysohn operator mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715023.png" /> into itself. Under other restrictions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715024.png" /> an Urysohn operator acts on other spaces, for instance, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715025.png" /> or maps one Orlicz space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715026.png" /> into another <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715027.png" />.
+
where $  K ( t , s , u ) $,
 +
$  a \leq  t $,  
 +
$  s \leq  b $,  
 +
$  - \infty < u < \infty $,  
 +
is a function such that $  g ( t) = \int _ {a}  ^ {b} K ( t , s , x ( s) )  ds $
 +
is continuous on $  [ a , b ] $
 +
for any $  x ( s) \in C ( a , b ) $(
 +
for example, $  K ( t , s , u ) $
 +
is continuous on $  a \leq  t $,
 +
$  s \leq  b $,  
 +
$  - \infty < u < \infty $).  
 +
If $  K ( t , s , u ) $
 +
is non-linear in $  u $,  
 +
then $  A $
 +
is a non-linear Urysohn operator mapping $  C [ a , b ] $
 +
into itself. Under other restrictions on $  K ( t , s , u ) $
 +
an Urysohn operator acts on other spaces, for instance, $  L _ {2} [ a , b ] $
 +
or maps one Orlicz space $  L _ {M _ {1}  } [ a , b ] $
 +
into another $  L _ {M _ {2}  } [ a , b ] $.
  
 
2)
 
2)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715028.png" /></td> </tr></table>
+
$$
 +
Bx  = \int\limits _ { a } ^ { b }  K ( t , s ) g ( s , x ( s) )  ds ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715029.png" /> is non-linear in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715030.png" /> and defined for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715032.png" />. Under appropriate restrictions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715033.png" /> the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715034.png" /> acts from one function space into another and is called a non-linear Hammerstein operator.
+
where $  g ( t , u ) $
 +
is non-linear in $  u $
 +
and defined for $  a \leq  t \leq  b $,
 +
$  - \infty < u < \infty $.  
 +
Under appropriate restrictions on $  g ( t , u ) $
 +
the operator $  B $
 +
acts from one function space into another and is called a non-linear Hammerstein operator.
  
 
3)
 
3)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715035.png" /></td> </tr></table>
+
$$
 +
F ( x)  = f ( t , x ( t) )
 +
$$
  
is a superposition operator, also called a Nemytskii operator, and, under suitable restrictions on the non-linearity in the second argument of the function, it transforms the space of measurable functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715036.png" /> into itself.
+
is a superposition operator, also called a Nemytskii operator, and, under suitable restrictions on the non-linearity in the second argument of the function, it transforms the space of measurable functions $  x ( t) $
 +
into itself.
  
 
4)
 
4)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715037.png" /></td> </tr></table>
+
$$
 +
D ( x)  = \sum _ {| k | \leq  m }
 +
D  ^ {k} ( a _ {k} ( t , x , Dx \dots D  ^ {k} x ))
 +
$$
  
is a non-linear differential operator of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715039.png" /> in divergence form acting on the Sobolev space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715040.png" /> under suitable restrictions on the non-linear function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715041.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715042.png" /> is the multi-index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715046.png" /> is a bounded domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715047.png" />.
+
is a non-linear differential operator of order $  2m $
 +
in divergence form acting on the Sobolev space $  W _  \rho  ^ {2m} ( G) $
 +
under suitable restrictions on the non-linear function $  a _ {k} ( t , u _ {0} \dots u _ {m} ) $.  
 +
Here $  k $
 +
is the multi-index $  ( k _ {1} \dots k _ {n} ) $,  
 +
$  | k | = k _ {1} + \dots + k _ {n} $,  
 +
$  D  ^ {k} = {\partial  ^ {| k | } } / {\partial  t _ {1} ^ {k _ {1} } \dots \partial  t _ {n} ^ {k _ {n} } } $
 +
and $  G $
 +
is a bounded domain in $  \mathbf R  ^ {n} $.
  
 
5)
 
5)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715048.png" /></td> </tr></table>
+
$$
 +
J ( x)  = \int\limits _ { a } ^ { b }
 +
K ( t , s , x ( s) , x  ^  \prime  ( s) )  ds
 +
$$
  
is non-linear integro-differential operator acting under appropriate restrictions on the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715049.png" /> in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715050.png" /> of continuously-differentiable functions.
+
is non-linear integro-differential operator acting under appropriate restrictions on the function $  K ( t , s , u _ {0} , u _ {1} ) $
 +
in the space $  C  ^ {1} [ a , b ] $
 +
of continuously-differentiable functions.
  
To non-linear operators acting from one topological vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715051.png" /> into another one <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715052.png" />, many concepts and operations of mathematical analysis of real-valued functions of a real variable can be transferred. Thus, a non-linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715053.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715054.png" />, is called bounded if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715055.png" /> is a bounded set in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715056.png" /> for any bounded set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715057.png" />; a non-linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715058.png" /> is continuous at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715059.png" /> if the inverse image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715060.png" /> of a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715061.png" /> of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715062.png" /> contains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715063.png" /> for some neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715064.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715065.png" />. As for functions, a non-linear operator that is continuous at every point of a compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715066.png" /> is bounded on this set. In contrast to linear operators, if a non-linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715067.png" /> acting on a normed space is bounded on some ball, it does not follow that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715068.png" /> is continuous on this ball. However, in certain cases continuity (boundedness) of a non-linear operator on a ball implies continuity (boundedness) of the operator in its whole domain of definition.
+
To non-linear operators acting from one topological vector space $  X $
 +
into another one $  Y $,  
 +
many concepts and operations of mathematical analysis of real-valued functions of a real variable can be transferred. Thus, a non-linear operator $  A : M \rightarrow Y $,  
 +
$  M \subset  X $,  
 +
is called bounded if $  A ( B \cap M ) $
 +
is a bounded set in $  Y $
 +
for any bounded set $  B \subset  X $;  
 +
a non-linear operator $  A $
 +
is continuous at a point $  x \in M $
 +
if the inverse image $  A  ^ {-} 1 ( U _ {Ax} ) $
 +
of a neighbourhood $  U _ {Ax} $
 +
of the point $  Ax $
 +
contains $  M \cap U _ {x} $
 +
for some neighbourhood $  U _ {x} $
 +
of $  x $.  
 +
As for functions, a non-linear operator that is continuous at every point of a compact set $  M $
 +
is bounded on this set. In contrast to linear operators, if a non-linear operator $  A $
 +
acting on a normed space is bounded on some ball, it does not follow that $  A $
 +
is continuous on this ball. However, in certain cases continuity (boundedness) of a non-linear operator on a ball implies continuity (boundedness) of the operator in its whole domain of definition.
  
Among the non-linear operators acting from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715069.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715070.png" /> one can distinguish certain important classes.
+
Among the non-linear operators acting from $  X $
 +
to $  Y $
 +
one can distinguish certain important classes.
  
1) Semi-linear operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715071.png" />, linear in each argument. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715072.png" /> of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715073.png" />-linear operators is isomorphic to the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715074.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715075.png" /> is the space of all linear operators from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715076.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715077.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715078.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715079.png" /> are normed spaces, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715080.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715081.png" /> are isometric. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715082.png" /> is symmetric in all arguments, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715083.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715084.png" /> and is called a homogeneous operator of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715086.png" />.
+
1) Semi-linear operators $  A : X \times \dots \times X \rightarrow Y $,  
 +
linear in each argument. The space $  L _ {n} ( X , Y ) = ( I) $
 +
of all n $-
 +
linear operators is isomorphic to the space $  L \{ X [ \dots L ( X , Y ) , . . . ] \} = ( II) $,  
 +
where $  L ( X , Y ) $
 +
is the space of all linear operators from $  X $
 +
to $  Y $.  
 +
If $  X $
 +
and $  Y $
 +
are normed spaces, then $  ( I) $
 +
and $  ( II) $
 +
are isometric. If $  A $
 +
is symmetric in all arguments, then $  \widetilde{A}  ( x \dots x ) $
 +
is denoted by $  \widetilde{A}  x  ^ {n} $
 +
and is called a homogeneous operator of degree n $.
  
2) In spaces endowed with a partial order, isotone operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715087.png" /> and antitone operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715088.png" /> are characterized by the conditions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715089.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715090.png" />.
+
2) In spaces endowed with a partial order, isotone operators $  A $
 +
and antitone operators $  \widetilde{A}  $
 +
are characterized by the conditions $  x \leq  y \Rightarrow Ax \leq  Ay $
 +
and $  x \leq  y \Rightarrow \widetilde{A}  x \geq  \widetilde{A}  y $.
  
3) In a Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715091.png" />, monotone operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715092.png" /> are defined by the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715093.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715094.png" />.
+
3) In a Hilbert space $  H $,  
 +
monotone operators $  M $
 +
are defined by the condition $  \langle  Mx - My , x - y \rangle \geq  0 $
 +
for any $  x , y \in H $.
  
 
4) Compact operators transform bounded subsets in the domain of definition into pre-compact sets; among them are the completely-continuous operators, which are simultaneously compact and continuous.
 
4) Compact operators transform bounded subsets in the domain of definition into pre-compact sets; among them are the completely-continuous operators, which are simultaneously compact and continuous.
  
For non-linear operators the concepts of a differential and a derivative are non-trivial and useful. An operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715095.png" /> acting from an open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715096.png" /> of a normed vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715097.png" /> into a normed vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715098.png" /> is called Fréchet differentiable at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715099.png" /> if there exists a continuous linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150100.png" /> such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150101.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150102.png" />,
+
For non-linear operators the concepts of a differential and a derivative are non-trivial and useful. An operator $  A $
 +
acting from an open set $  G $
 +
of a normed vector space $  X $
 +
into a normed vector space $  Y $
 +
is called Fréchet differentiable at a point $  x \in G $
 +
if there exists a continuous linear operator $  A  ^  \prime  ( x) : X \rightarrow Y $
 +
such that for any $  h \in X $
 +
for which $  x + h \in G $,
 +
 
 +
$$
 +
A ( x+ h ) - A ( x)  = A  ^  \prime  ( x) h + \omega ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150103.png" /></td> </tr></table>
+
where  $  \omega / \| h \| \rightarrow 0 $
 +
as  $  h \rightarrow 0 $.
 +
In this case the linear part  $  A  ^  \prime  ( x) h $
 +
in  $  h $
 +
of the increment  $  A ( x+ h) - A ( x) $
 +
is called the Fréchet differential of  $  A $
 +
at  $  x $
 +
and is denoted by  $  dA ( x , h ) $,
 +
and  $  \omega = \omega ( A , x , h ) $
 +
is called the remainder of the increment. The bounded linear operator  $  A  ^  \prime  ( x) $
 +
is called the Fréchet derivative of  $  A $
 +
at  $  x $.  
 +
Apart from Fréchet differentiability one also introduces Gâteaux differentiability. Namely, an operator  $  A $
 +
is called Gâteaux differentiable at a point  $  x $
 +
if the limit
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150104.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150105.png" />. In this case the linear part <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150106.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150107.png" /> of the increment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150108.png" /> is called the Fréchet differential of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150109.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150110.png" /> and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150111.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150112.png" /> is called the remainder of the increment. The bounded linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150113.png" /> is called the Fréchet derivative of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150114.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150115.png" />. Apart from Fréchet differentiability one also introduces Gâteaux differentiability. Namely, an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150116.png" /> is called Gâteaux differentiable at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150117.png" /> if the limit
+
$$
 +
\lim\limits _ {t \rightarrow 0 } \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150118.png" /></td> </tr></table>
+
\frac{A ( x+ th ) - A ( x) }{t}
 +
  = DA ( x , h )
 +
$$
  
exists, which is called the Gâteaux differential of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150119.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150120.png" />. The Gâteaux differential is homogeneous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150121.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150122.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150123.png" /> is linear in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150124.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150125.png" />, then the linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150126.png" /> is called the Gâteaux derivative of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150127.png" />. Fréchet differentiability implies Gâteaux differentiability, and then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150128.png" />. Gâteaux differentiability does not, in general, imply Fréchet differentiability, but if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150129.png" /> exists in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150130.png" />, is continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150131.png" /> and uniformly continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150132.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150133.png" /> is Fréchet differentiable at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150134.png" />. For non-linear functionals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150135.png" /> Fréchet and Gâteaux differentials and derivatives are defined similarly. Here the Gâteaux derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150136.png" /> is called the gradient of the functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150137.png" /> and is an operator from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150138.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150139.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150140.png" /> for some non-linear functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150141.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150142.png" /> is called a potential operator.
+
exists, which is called the Gâteaux differential of $  A $
 +
at $  x $.  
 +
The Gâteaux differential is homogeneous in $  h $,  
 +
that is, $  DA ( x , \lambda h ) = \lambda DA ( x , h ) $.  
 +
If $  DA ( x , h ) $
 +
is linear in $  h $
 +
and $  DA ( x , h ) = A _ {0}  ^  \prime  ( x) h $,  
 +
then the linear operator $  A _ {0}  ^  \prime  ( x) $
 +
is called the Gâteaux derivative of $  A $.  
 +
Fréchet differentiability implies Gâteaux differentiability, and then $  A _ {0}  ^  \prime  ( x) = A  ^  \prime  ( x) $.  
 +
Gâteaux differentiability does not, in general, imply Fréchet differentiability, but if $  DA ( x , h ) $
 +
exists in a neighbourhood of $  x $,  
 +
is continuous in $  h $
 +
and uniformly continuous in $  x $,  
 +
then $  A $
 +
is Fréchet differentiable at $  x $.  
 +
For non-linear functionals $  f : G \rightarrow \mathbf R $
 +
Fréchet and Gâteaux differentials and derivatives are defined similarly. Here the Gâteaux derivative $  f _ {0} ^ { \prime } $
 +
is called the gradient of the functional $  f $
 +
and is an operator from $  G $
 +
to $  X  ^ {*} $.  
 +
If $  Ax = \mathop{\rm grad}  f ( x) $
 +
for some non-linear functional $  f $,  
 +
then $  A $
 +
is called a potential operator.
  
For operators acting on separable topological vector spaces one can in one way or another define differentiation. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150143.png" /> be a collection of bounded sets in a topological vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150144.png" />. A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150145.png" /> is called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150147.png" />-small if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150148.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150149.png" /> uniformly in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150150.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150151.png" />. A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150152.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150153.png" /> is open) is called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150155.png" />-differentiable at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150156.png" /> if
+
For operators acting on separable topological vector spaces one can in one way or another define differentiation. Let $  \mathfrak M $
 +
be a collection of bounded sets in a topological vector space $  X $.  
 +
A mapping $  \omega : G \times X \rightarrow Y $
 +
is called $  \mathfrak M $-
 +
small if $  \omega ( x , th ) / t \rightarrow 0 $
 +
as $  t \rightarrow 0 $
 +
uniformly in $  h \in \mathfrak M $
 +
for any $  M \in \mathfrak M $.  
 +
A mapping $  A : G \rightarrow Y $(
 +
where $  G \subset  X $
 +
is open) is called $  \mathfrak M $-
 +
differentiable at $  x \in G $
 +
if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150157.png" /></td> </tr></table>
+
$$
 +
A ( x+ h ) - A x  = A  ^  \prime  ( x) h + \omega ( A , x , h ) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150158.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150159.png" />-small mapping. Most frequently <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150160.png" /> is taken to be the collection of all bounded, all compact or all finite sets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150161.png" />. For non-linear operators on normed spaces the first case leads to Fréchet differentiability and the third to Gâteaux differentiability.
+
where $  \omega $
 +
is an $  \mathfrak M $-
 +
small mapping. Most frequently $  \mathfrak M $
 +
is taken to be the collection of all bounded, all compact or all finite sets of $  X $.  
 +
For non-linear operators on normed spaces the first case leads to Fréchet differentiability and the third to Gâteaux differentiability.
  
Higher-order derivatives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150162.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150163.png" /> of an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150164.png" /> are defined in the usual way, as derivatives of derivatives. These are symmetric multi-linear mappings. A differential of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150165.png" /> is then a homogeneous form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150166.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150167.png" />. Other definitions of higher-order derivatives are possible. Suppose, for example, that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150168.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150169.png" /> are normed vector spaces, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150170.png" /> is open, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150171.png" />. If for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150172.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150173.png" />,
+
Higher-order derivatives $  A  ^ {(} n) ( x) $
 +
and $  A _ {0}  ^ {(} n) ( x) $
 +
of an operator $  A $
 +
are defined in the usual way, as derivatives of derivatives. These are symmetric multi-linear mappings. A differential of order n $
 +
is then a homogeneous form $  A  ^ {(} n) ( x) h  ^ {n} $
 +
of degree n $.  
 +
Other definitions of higher-order derivatives are possible. Suppose, for example, that $  X $
 +
and $  Y $
 +
are normed vector spaces, $  G \subset  X $
 +
is open, and $  x \in G $.  
 +
If for any $  h $
 +
for which $  x + h \in G $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150174.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
A ( x+ h) - A( x)  = \
 +
a _ {0} ( x) + a _ {1} ( x) h + \dots + a _ {n} ( x) h  ^ {n} +
 +
\omega ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150175.png" />, then the multi-linear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150176.png" /> is called the derivative of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150178.png" />. The expression (*) is then called the bounded expansion of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150180.png" /> of the difference <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150181.png" />. Under appropriate restrictions the various definitions of higher-order derivatives are equivalent.
+
where $  \omega = o ( \| h \|  ^ {n} ) $,  
 +
then the multi-linear form $  k! a _ {k} ( x) $
 +
is called the derivative of order $  k $.  
 +
The expression (*) is then called the bounded expansion of order n $
 +
of the difference $  A( x+ h) - A ( x) $.  
 +
Under appropriate restrictions the various definitions of higher-order derivatives are equivalent.
  
If a scalar countably-additive measure is given in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150182.png" />, then a non-linear operator can be integrated, by understanding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150183.png" /> in the sense of the [[Bochner integral|Bochner integral]].
+
If a scalar countably-additive measure is given in $  X $,  
 +
then a non-linear operator can be integrated, by understanding $  \int A ( x)  dx $
 +
in the sense of the [[Bochner integral|Bochner integral]].
  
For a non-linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150184.png" />, as in the case of a linear operator, the values of the parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150185.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150186.png" /> exists and is continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150187.png" /> are naturally called regular, and the remaining points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150188.png" /> belong to the spectrum. In its properties the spectrum of a non-linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150189.png" /> can differ vastly from spectra of linear operators. Thus, the spectrum of a completely-continuous non-linear operator can have continuous parts; an eigen element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150190.png" /> of an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150191.png" />, that is, an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150192.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150193.png" />, can bifurcate into several eigen element branches (as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150194.png" /> varies), cf. [[Bifurcation|Bifurcation]].
+
For a non-linear operator $  A : M \rightarrow Y $,  
 +
as in the case of a linear operator, the values of the parameter $  \lambda $
 +
for which $  ( I - \lambda A )  ^ {-} 1 $
 +
exists and is continuous on $  A ( M) $
 +
are naturally called regular, and the remaining points $  \lambda $
 +
belong to the spectrum. In its properties the spectrum of a non-linear operator $  A $
 +
can differ vastly from spectra of linear operators. Thus, the spectrum of a completely-continuous non-linear operator can have continuous parts; an eigen element $  x _ {0} $
 +
of an operator $  A $,  
 +
that is, an element $  x _ {0} $
 +
such that $  x _ {0} = \lambda A x _ {0} $,  
 +
can bifurcate into several eigen element branches (as $  \lambda $
 +
varies), cf. [[Bifurcation|Bifurcation]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.A. Lyusternik,  V.I. Sobolev,  "Elemente der Funktionalanalysis" , Akademie Verlag  (1968)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.V. Kantorovich,  G.P. Akilov,  "Functionalanalysis in normierten Räumen" , Akademie Verlag  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M.M. Vainberg,  "Variational methods for the study of nonlinear operators" , Holden-Day  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  M.A. Krasnosel'skii,  P.P. Zabreiko,  "Geometric methods of non-linear analysis" , Springer  (1983)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  H. Gajewski,  K. Gröger,  K. Zacharias,  "Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen" , Akademie Verlag  (1974)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.A. Lyusternik,  V.I. Sobolev,  "Elemente der Funktionalanalysis" , Akademie Verlag  (1968)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.V. Kantorovich,  G.P. Akilov,  "Functionalanalysis in normierten Räumen" , Akademie Verlag  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M.M. Vainberg,  "Variational methods for the study of nonlinear operators" , Holden-Day  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  M.A. Krasnosel'skii,  P.P. Zabreiko,  "Geometric methods of non-linear analysis" , Springer  (1983)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  H. Gajewski,  K. Gröger,  K. Zacharias,  "Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen" , Akademie Verlag  (1974)</TD></TR></table>

Latest revision as of 08:03, 6 June 2020


A mapping $ A $ of a space (as a rule, a vector space) $ X $ into a vector space $ Y $ over a common field of scalars that does not have the property of linearity, that is, such that generally speaking

$$ A ( \alpha _ {1} x _ {1} + \alpha _ {2} x _ {2} ) \neq \ \alpha _ {1} A x _ {1} + \alpha _ {2} A x _ {2} . $$

If $ Y $ is the set $ \mathbf R $ of real or $ \mathbf C $ of complex numbers, then a non-linear operator is called a non-linear functional. The simplest example of a non-linear operator (non-linear functional) is a real-valued function of a real argument other than a linear function. One of the important sources of the origin of non-linear operators are problems in mathematical physics. If in a local mathematical description of a process small quantities not only of the first but also of higher orders are taken into account, then there arise equations with non-linear operators. Certain problems in mathematical economics, auto-regulation, control theory, etc., also lead to non-linear operator equations.

Examples of non-linear operators.

1)

$$ Ax = \int\limits _ { a } ^ { b } K ( t , s , x ( s) ) ds, $$

where $ K ( t , s , u ) $, $ a \leq t $, $ s \leq b $, $ - \infty < u < \infty $, is a function such that $ g ( t) = \int _ {a} ^ {b} K ( t , s , x ( s) ) ds $ is continuous on $ [ a , b ] $ for any $ x ( s) \in C ( a , b ) $( for example, $ K ( t , s , u ) $ is continuous on $ a \leq t $, $ s \leq b $, $ - \infty < u < \infty $). If $ K ( t , s , u ) $ is non-linear in $ u $, then $ A $ is a non-linear Urysohn operator mapping $ C [ a , b ] $ into itself. Under other restrictions on $ K ( t , s , u ) $ an Urysohn operator acts on other spaces, for instance, $ L _ {2} [ a , b ] $ or maps one Orlicz space $ L _ {M _ {1} } [ a , b ] $ into another $ L _ {M _ {2} } [ a , b ] $.

2)

$$ Bx = \int\limits _ { a } ^ { b } K ( t , s ) g ( s , x ( s) ) ds , $$

where $ g ( t , u ) $ is non-linear in $ u $ and defined for $ a \leq t \leq b $, $ - \infty < u < \infty $. Under appropriate restrictions on $ g ( t , u ) $ the operator $ B $ acts from one function space into another and is called a non-linear Hammerstein operator.

3)

$$ F ( x) = f ( t , x ( t) ) $$

is a superposition operator, also called a Nemytskii operator, and, under suitable restrictions on the non-linearity in the second argument of the function, it transforms the space of measurable functions $ x ( t) $ into itself.

4)

$$ D ( x) = \sum _ {| k | \leq m } D ^ {k} ( a _ {k} ( t , x , Dx \dots D ^ {k} x )) $$

is a non-linear differential operator of order $ 2m $ in divergence form acting on the Sobolev space $ W _ \rho ^ {2m} ( G) $ under suitable restrictions on the non-linear function $ a _ {k} ( t , u _ {0} \dots u _ {m} ) $. Here $ k $ is the multi-index $ ( k _ {1} \dots k _ {n} ) $, $ | k | = k _ {1} + \dots + k _ {n} $, $ D ^ {k} = {\partial ^ {| k | } } / {\partial t _ {1} ^ {k _ {1} } \dots \partial t _ {n} ^ {k _ {n} } } $ and $ G $ is a bounded domain in $ \mathbf R ^ {n} $.

5)

$$ J ( x) = \int\limits _ { a } ^ { b } K ( t , s , x ( s) , x ^ \prime ( s) ) ds $$

is non-linear integro-differential operator acting under appropriate restrictions on the function $ K ( t , s , u _ {0} , u _ {1} ) $ in the space $ C ^ {1} [ a , b ] $ of continuously-differentiable functions.

To non-linear operators acting from one topological vector space $ X $ into another one $ Y $, many concepts and operations of mathematical analysis of real-valued functions of a real variable can be transferred. Thus, a non-linear operator $ A : M \rightarrow Y $, $ M \subset X $, is called bounded if $ A ( B \cap M ) $ is a bounded set in $ Y $ for any bounded set $ B \subset X $; a non-linear operator $ A $ is continuous at a point $ x \in M $ if the inverse image $ A ^ {-} 1 ( U _ {Ax} ) $ of a neighbourhood $ U _ {Ax} $ of the point $ Ax $ contains $ M \cap U _ {x} $ for some neighbourhood $ U _ {x} $ of $ x $. As for functions, a non-linear operator that is continuous at every point of a compact set $ M $ is bounded on this set. In contrast to linear operators, if a non-linear operator $ A $ acting on a normed space is bounded on some ball, it does not follow that $ A $ is continuous on this ball. However, in certain cases continuity (boundedness) of a non-linear operator on a ball implies continuity (boundedness) of the operator in its whole domain of definition.

Among the non-linear operators acting from $ X $ to $ Y $ one can distinguish certain important classes.

1) Semi-linear operators $ A : X \times \dots \times X \rightarrow Y $, linear in each argument. The space $ L _ {n} ( X , Y ) = ( I) $ of all $ n $- linear operators is isomorphic to the space $ L \{ X [ \dots L ( X , Y ) , . . . ] \} = ( II) $, where $ L ( X , Y ) $ is the space of all linear operators from $ X $ to $ Y $. If $ X $ and $ Y $ are normed spaces, then $ ( I) $ and $ ( II) $ are isometric. If $ A $ is symmetric in all arguments, then $ \widetilde{A} ( x \dots x ) $ is denoted by $ \widetilde{A} x ^ {n} $ and is called a homogeneous operator of degree $ n $.

2) In spaces endowed with a partial order, isotone operators $ A $ and antitone operators $ \widetilde{A} $ are characterized by the conditions $ x \leq y \Rightarrow Ax \leq Ay $ and $ x \leq y \Rightarrow \widetilde{A} x \geq \widetilde{A} y $.

3) In a Hilbert space $ H $, monotone operators $ M $ are defined by the condition $ \langle Mx - My , x - y \rangle \geq 0 $ for any $ x , y \in H $.

4) Compact operators transform bounded subsets in the domain of definition into pre-compact sets; among them are the completely-continuous operators, which are simultaneously compact and continuous.

For non-linear operators the concepts of a differential and a derivative are non-trivial and useful. An operator $ A $ acting from an open set $ G $ of a normed vector space $ X $ into a normed vector space $ Y $ is called Fréchet differentiable at a point $ x \in G $ if there exists a continuous linear operator $ A ^ \prime ( x) : X \rightarrow Y $ such that for any $ h \in X $ for which $ x + h \in G $,

$$ A ( x+ h ) - A ( x) = A ^ \prime ( x) h + \omega , $$

where $ \omega / \| h \| \rightarrow 0 $ as $ h \rightarrow 0 $. In this case the linear part $ A ^ \prime ( x) h $ in $ h $ of the increment $ A ( x+ h) - A ( x) $ is called the Fréchet differential of $ A $ at $ x $ and is denoted by $ dA ( x , h ) $, and $ \omega = \omega ( A , x , h ) $ is called the remainder of the increment. The bounded linear operator $ A ^ \prime ( x) $ is called the Fréchet derivative of $ A $ at $ x $. Apart from Fréchet differentiability one also introduces Gâteaux differentiability. Namely, an operator $ A $ is called Gâteaux differentiable at a point $ x $ if the limit

$$ \lim\limits _ {t \rightarrow 0 } \ \frac{A ( x+ th ) - A ( x) }{t} = DA ( x , h ) $$

exists, which is called the Gâteaux differential of $ A $ at $ x $. The Gâteaux differential is homogeneous in $ h $, that is, $ DA ( x , \lambda h ) = \lambda DA ( x , h ) $. If $ DA ( x , h ) $ is linear in $ h $ and $ DA ( x , h ) = A _ {0} ^ \prime ( x) h $, then the linear operator $ A _ {0} ^ \prime ( x) $ is called the Gâteaux derivative of $ A $. Fréchet differentiability implies Gâteaux differentiability, and then $ A _ {0} ^ \prime ( x) = A ^ \prime ( x) $. Gâteaux differentiability does not, in general, imply Fréchet differentiability, but if $ DA ( x , h ) $ exists in a neighbourhood of $ x $, is continuous in $ h $ and uniformly continuous in $ x $, then $ A $ is Fréchet differentiable at $ x $. For non-linear functionals $ f : G \rightarrow \mathbf R $ Fréchet and Gâteaux differentials and derivatives are defined similarly. Here the Gâteaux derivative $ f _ {0} ^ { \prime } $ is called the gradient of the functional $ f $ and is an operator from $ G $ to $ X ^ {*} $. If $ Ax = \mathop{\rm grad} f ( x) $ for some non-linear functional $ f $, then $ A $ is called a potential operator.

For operators acting on separable topological vector spaces one can in one way or another define differentiation. Let $ \mathfrak M $ be a collection of bounded sets in a topological vector space $ X $. A mapping $ \omega : G \times X \rightarrow Y $ is called $ \mathfrak M $- small if $ \omega ( x , th ) / t \rightarrow 0 $ as $ t \rightarrow 0 $ uniformly in $ h \in \mathfrak M $ for any $ M \in \mathfrak M $. A mapping $ A : G \rightarrow Y $( where $ G \subset X $ is open) is called $ \mathfrak M $- differentiable at $ x \in G $ if

$$ A ( x+ h ) - A x = A ^ \prime ( x) h + \omega ( A , x , h ) , $$

where $ \omega $ is an $ \mathfrak M $- small mapping. Most frequently $ \mathfrak M $ is taken to be the collection of all bounded, all compact or all finite sets of $ X $. For non-linear operators on normed spaces the first case leads to Fréchet differentiability and the third to Gâteaux differentiability.

Higher-order derivatives $ A ^ {(} n) ( x) $ and $ A _ {0} ^ {(} n) ( x) $ of an operator $ A $ are defined in the usual way, as derivatives of derivatives. These are symmetric multi-linear mappings. A differential of order $ n $ is then a homogeneous form $ A ^ {(} n) ( x) h ^ {n} $ of degree $ n $. Other definitions of higher-order derivatives are possible. Suppose, for example, that $ X $ and $ Y $ are normed vector spaces, $ G \subset X $ is open, and $ x \in G $. If for any $ h $ for which $ x + h \in G $,

$$ \tag{* } A ( x+ h) - A( x) = \ a _ {0} ( x) + a _ {1} ( x) h + \dots + a _ {n} ( x) h ^ {n} + \omega , $$

where $ \omega = o ( \| h \| ^ {n} ) $, then the multi-linear form $ k! a _ {k} ( x) $ is called the derivative of order $ k $. The expression (*) is then called the bounded expansion of order $ n $ of the difference $ A( x+ h) - A ( x) $. Under appropriate restrictions the various definitions of higher-order derivatives are equivalent.

If a scalar countably-additive measure is given in $ X $, then a non-linear operator can be integrated, by understanding $ \int A ( x) dx $ in the sense of the Bochner integral.

For a non-linear operator $ A : M \rightarrow Y $, as in the case of a linear operator, the values of the parameter $ \lambda $ for which $ ( I - \lambda A ) ^ {-} 1 $ exists and is continuous on $ A ( M) $ are naturally called regular, and the remaining points $ \lambda $ belong to the spectrum. In its properties the spectrum of a non-linear operator $ A $ can differ vastly from spectra of linear operators. Thus, the spectrum of a completely-continuous non-linear operator can have continuous parts; an eigen element $ x _ {0} $ of an operator $ A $, that is, an element $ x _ {0} $ such that $ x _ {0} = \lambda A x _ {0} $, can bifurcate into several eigen element branches (as $ \lambda $ varies), cf. Bifurcation.

References

[1] L.A. Lyusternik, V.I. Sobolev, "Elemente der Funktionalanalysis" , Akademie Verlag (1968) (Translated from Russian)
[2] L.V. Kantorovich, G.P. Akilov, "Functionalanalysis in normierten Räumen" , Akademie Verlag (1964) (Translated from Russian)
[3] M.M. Vainberg, "Variational methods for the study of nonlinear operators" , Holden-Day (1964) (Translated from Russian)
[4] M.A. Krasnosel'skii, P.P. Zabreiko, "Geometric methods of non-linear analysis" , Springer (1983) (Translated from Russian)
[5] H. Gajewski, K. Gröger, K. Zacharias, "Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen" , Akademie Verlag (1974)
How to Cite This Entry:
Non-linear operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Non-linear_operator&oldid=14292
This article was adapted from an original article by V.I. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article