Namespaces
Variants
Actions

Multiplicative arithmetic function

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 11A25 [MSN][ZBL]

$\def\Epsilon{\mathrm{E}}$ An arithmetic function of one argument, $f(m)$, satisfying the condition \begin{equation} f(mn) = f(m) f(n) \label{mult} \end{equation} for any pair of coprime integers $m,n$. It is usually assumed that $f$ is not identically zero (which is equivalent to the condition $f(1)=1$). A multiplicative arithmetic function is called strongly multiplicative if $f(p^a) = f(p)$ for all prime numbers $p$ and all natural numbers $a$. If \eqref{mult} holds for any two numbers $m,n$, and not just for coprime numbers, then $f$ is called totally multiplicative; in this case $f(p^a) = f(p)^a$.

Examples of multiplicative arithmetic functions. The function $\tau(m)$, the number of divisors of a natural number $m$; the function $\sigma(m)$, the sum of divisors of a natural number $m$; the Euler function $\phi(m)$; and the Möbius function $\mu(m)$. The function $\phi(m)/m$ is a strongly multiplicative arithmetic function, a power function $m^k$ is a totally multiplicative arithmetic function.


Comments

The Dirichlet convolution product

$$ (f*g)(n) = \sum_{d\vert n} f(d) g(n/d)\ $$

yields a commutative group structure on the multiplicative functions. The unit element is given by the function $e$, where $e(1)=1$ and $e(m) = 0$ for all $m > 1$. Another standard multiplicative function is the constant function $\Epsilon(n)$ with $\Epsilon(m) = 1$ for all $m$ and its inverse $\mu$, the Möbius function. Note that $\phi = \mu * N_1$, where $N_1(n) = n$ for all $n$, and that $\tau = \Epsilon * \Epsilon$, $\sigma = \Epsilon * N_1$. In this context, the Möbius inversion formula states that if $g = \Epsilon * f$ then $f = \mu * g$.

Formally, the Dirichlet series of a multiplicative function $f$ has an Euler product:

$$ \sum_{n=1}^\infty f(n) n^{-s} = \prod_p \left({1 + f(p) p^{-s} + f(p^2) p^{-2s} + \cdots }\right) \ , $$

whose form simplifies considerably if $f$ is strongly or totally multiplicative: if $f$ is strongly multiplicative then $$ \sum_{n=1}^\infty f(n) n^{-s} = \prod_p \left({1 + f(p) p^{-s} (1 - p^{-s})^{-1}} \right) \ , $$ and if $f$ is totally multiplicative then $$ \sum_{n=1}^\infty f(n) n^{-s} = \prod_p \left({1 - f(p) p^{-s}}\right)^{-1} \ , $$


Dirichlet convolution of functions corresponds to multiplication of the associated Dirichlet series.

References

[HaWr] G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers", Clarendon Press (1960) pp. Chapts. XVI-XVII MR2445243 MR1561815 Zbl 0086.25803
How to Cite This Entry:
Multiplicative arithmetic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multiplicative_arithmetic_function&oldid=42341
This article was adapted from an original article by I.P. Kubilyus (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article