Namespaces
Variants
Actions

Difference between revisions of "Multi-operator group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''group with multiple operators, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m0652002.png" />-group''
+
<!--
 +
m0652002.png
 +
$#A+1 = 55 n = 1
 +
$#C+1 = 55 : ~/encyclopedia/old_files/data/M065/M.0605200 Multi\AAhoperator group,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A [[Universal algebra|universal algebra]] which is a [[Group|group]] relative to the addition operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m0652003.png" /> (which need not be commutative) and in which there is given a system of operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m0652004.png" /> of arity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m0652005.png" />. It is assumed that the zero element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m0652006.png" /> of the additive group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m0652007.png" /> is a subalgebra, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m0652008.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m0652009.png" />. Thus, a multi-operator group combines the concepts of a group, a [[Linear-algebra(2)|linear algebra]] and a [[Ring|ring]]. An ideal of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520011.png" />-group is a [[Normal subgroup|normal subgroup]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520012.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520013.png" /> such that
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520014.png" /></td> </tr></table>
+
''group with multiple operators,  $  \Omega $-
 +
group''
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520018.png" />. Congruences on a multi-operator group are described by coset classes relative to ideals.
+
A [[Universal algebra|universal algebra]] which is a [[Group|group]] relative to the addition operation  $  + $(
 +
which need not be commutative) and in which there is given a system of operations  $  \Omega $
 +
of arity  $  \geq  1 $.
 +
It is assumed that the zero element  $  0 $
 +
of the additive group  $  A $
 +
is a subalgebra, that is, $  0 \dots 0 \omega = 0 $
 +
for all  $  \omega \in \Omega $.  
 +
Thus, a multi-operator group combines the concepts of a group, a [[Linear-algebra(2)|linear algebra]] and a [[Ring|ring]]. An ideal of an  $  \Omega $-
 +
group is a [[Normal subgroup|normal subgroup]]  $  N $
 +
of  $  A $
 +
such that
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520021.png" /> be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520022.png" />-subgroups in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520023.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520024.png" /> (that is, subalgebras of the universal algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520025.png" />), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520026.png" /> is generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520028.png" />. The mutual commutator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520029.png" /> of the subgroups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520031.png" /> is the ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520032.png" /> generated by all elements of the form
+
$$
 +
- ( x _ {1} \dots x _ {n} \omega ) +
 +
( x _ {1} \dots x _ {i-} 1 ( a + x _ {i} ) x _ {i+} 1 \dots
 +
x _ {n} \omega ) \in N
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520033.png" /></td> </tr></table>
+
for all  $  a \in N $,
 +
$  x _ {i} \in A $,
 +
$  \omega \in \Omega $,
 +
$  1 \leq  i \leq  n $.
 +
Congruences on a multi-operator group are described by coset classes relative to ideals.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520034.png" /></td> </tr></table>
+
Let  $  A $,
 +
$  B $
 +
and  $  C $
 +
be  $  \Omega $-
 +
subgroups in an  $  \Omega $-
 +
group  $  G $(
 +
that is, subalgebras of the universal algebra  $  G $),
 +
where  $  C $
 +
is generated by  $  A $
 +
and  $  B $.  
 +
The mutual commutator  $  [ A , B ] $
 +
of the subgroups  $  A $
 +
and  $  B $
 +
is the ideal in  $  C $
 +
generated by all elements of the form
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520037.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520038.png" />. A multi-operator group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520039.png" /> is called Abelian if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520040.png" />. Inductively one defines ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520041.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520042.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520043.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520044.png" />. A multi-operator group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520045.png" /> is called nilpotent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520046.png" />, and solvable if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520047.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520048.png" />. Many of the properties of the corresponding classes of groups and rings can be transferred to these classes of multi-operator groups. A multi-operator group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520049.png" /> is called a multi-operator (linear) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520054.png" />-algebra over a commutative associative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520055.png" /> with an identity if the addition in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520056.png" /> is commutative, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520057.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520058.png" /> is the set of unary operations from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520059.png" />, and if all operations from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520060.png" /> are semi-linear over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520061.png" /> (see [[#References|[2]]]–[[#References|[6]]], and [[Semi-linear mapping|Semi-linear mapping]]).
+
$$
 +
- a - b + a + b ,
 +
$$
 +
 
 +
$$
 +
- ( a _ {1} \dots a _ {n} \omega ) - ( b _ {1} \dots
 +
b _ {n} \omega ) + ( a _ {1} + b _ {1} ) \dots ( a _ {n} + b _ {n} ) \omega ,
 +
$$
 +
 
 +
where $  a , a _ {i} \in A $,
 +
$  b , b _ {i} \in B $,  
 +
$  \omega \in \Omega $.  
 +
Let $  G ^ { \prime } = [ G , G ] $.  
 +
A multi-operator group $  G $
 +
is called Abelian if $  G ^ { \prime } = 0 $.  
 +
Inductively one defines ideals $  G _ {i+} 1 = [ G _ {i} , G ] $,  
 +
where $  G _ {1} = G ^ { \prime } $,  
 +
and $  G  ^ {(} i+ 1) = [ G  ^ {(} i) , G  ^ {(} i) ] $,  
 +
where $  G  ^ {(} 1) = G ^ { \prime } $.  
 +
A multi-operator group $  G $
 +
is called nilpotent if $  G _ {i} = 0 $,  
 +
and solvable if $  G  ^ {(} i) = 0 $
 +
for some $  i $.  
 +
Many of the properties of the corresponding classes of groups and rings can be transferred to these classes of multi-operator groups. A multi-operator group $  A $
 +
is called a multi-operator (linear) $  \Omega $-
 +
algebra over a commutative associative ring $  k $
 +
with an identity if the addition in $  A $
 +
is commutative, if $  \Omega _ {1} = k $,  
 +
where $  \Omega _ {1} $
 +
is the set of unary operations from $  \Omega $,  
 +
and if all operations from $  \Omega $
 +
are semi-linear over $  k $(
 +
see [[#References|[2]]]–[[#References|[6]]], and [[Semi-linear mapping|Semi-linear mapping]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.J. Higgins,  "Groups with multiple operators"  ''Proc. London Math. Soc.'' , '''6'''  (1956)  pp. 366–416</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.G. Kurosh,  "Free sums of multi-operator algebras"  ''Sibirsk. Mat. Zh.'' , '''1''' :  1  (1960)  pp. 62–70  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.G. Kurosh,  "Lectures on general algebra" , Chelsea  (1963)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.G. Kurosh,  "General algebra. Lectures for the academic year 1969/70" , Moscow  (1974)  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A.G. Kurosh,  "Multioperator rings and algebras"  ''Russian Math. Surveys'' , '''24''' :  1  (1969)  pp. 1–13  ''Uspekhi Mat. Nauk.'' , '''24''' :  1  (1969)  pp. 3–15</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  T.M. Baranovich,  M.S. Burgin,  "Linear <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520062.png" />-algebras"  ''Russian Math. Surveys'' , '''30''' :  4  (1975)  pp. 65–113  ''Uspekhi Mat. Nauk.'' , '''30''' :  4  (1975)  pp. 61–106</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  V.A. Artamonov,  "Universal algebras"  ''Itogi Nauk. i Tekhn. Algebra. Topol. Geom.'' , '''14'''  (1976)  pp. 191–248  (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> , ''Rings'' , '''1''' , Novosibirsk  (1973)  pp. 41–45</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.J. Higgins,  "Groups with multiple operators"  ''Proc. London Math. Soc.'' , '''6'''  (1956)  pp. 366–416</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.G. Kurosh,  "Free sums of multi-operator algebras"  ''Sibirsk. Mat. Zh.'' , '''1''' :  1  (1960)  pp. 62–70  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.G. Kurosh,  "Lectures on general algebra" , Chelsea  (1963)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.G. Kurosh,  "General algebra. Lectures for the academic year 1969/70" , Moscow  (1974)  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A.G. Kurosh,  "Multioperator rings and algebras"  ''Russian Math. Surveys'' , '''24''' :  1  (1969)  pp. 1–13  ''Uspekhi Mat. Nauk.'' , '''24''' :  1  (1969)  pp. 3–15</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  T.M. Baranovich,  M.S. Burgin,  "Linear <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520062.png" />-algebras"  ''Russian Math. Surveys'' , '''30''' :  4  (1975)  pp. 65–113  ''Uspekhi Mat. Nauk.'' , '''30''' :  4  (1975)  pp. 61–106</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  V.A. Artamonov,  "Universal algebras"  ''Itogi Nauk. i Tekhn. Algebra. Topol. Geom.'' , '''14'''  (1976)  pp. 191–248  (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> , ''Rings'' , '''1''' , Novosibirsk  (1973)  pp. 41–45</TD></TR></table>

Latest revision as of 08:01, 6 June 2020


group with multiple operators, $ \Omega $- group

A universal algebra which is a group relative to the addition operation $ + $( which need not be commutative) and in which there is given a system of operations $ \Omega $ of arity $ \geq 1 $. It is assumed that the zero element $ 0 $ of the additive group $ A $ is a subalgebra, that is, $ 0 \dots 0 \omega = 0 $ for all $ \omega \in \Omega $. Thus, a multi-operator group combines the concepts of a group, a linear algebra and a ring. An ideal of an $ \Omega $- group is a normal subgroup $ N $ of $ A $ such that

$$ - ( x _ {1} \dots x _ {n} \omega ) + ( x _ {1} \dots x _ {i-} 1 ( a + x _ {i} ) x _ {i+} 1 \dots x _ {n} \omega ) \in N $$

for all $ a \in N $, $ x _ {i} \in A $, $ \omega \in \Omega $, $ 1 \leq i \leq n $. Congruences on a multi-operator group are described by coset classes relative to ideals.

Let $ A $, $ B $ and $ C $ be $ \Omega $- subgroups in an $ \Omega $- group $ G $( that is, subalgebras of the universal algebra $ G $), where $ C $ is generated by $ A $ and $ B $. The mutual commutator $ [ A , B ] $ of the subgroups $ A $ and $ B $ is the ideal in $ C $ generated by all elements of the form

$$ - a - b + a + b , $$

$$ - ( a _ {1} \dots a _ {n} \omega ) - ( b _ {1} \dots b _ {n} \omega ) + ( a _ {1} + b _ {1} ) \dots ( a _ {n} + b _ {n} ) \omega , $$

where $ a , a _ {i} \in A $, $ b , b _ {i} \in B $, $ \omega \in \Omega $. Let $ G ^ { \prime } = [ G , G ] $. A multi-operator group $ G $ is called Abelian if $ G ^ { \prime } = 0 $. Inductively one defines ideals $ G _ {i+} 1 = [ G _ {i} , G ] $, where $ G _ {1} = G ^ { \prime } $, and $ G ^ {(} i+ 1) = [ G ^ {(} i) , G ^ {(} i) ] $, where $ G ^ {(} 1) = G ^ { \prime } $. A multi-operator group $ G $ is called nilpotent if $ G _ {i} = 0 $, and solvable if $ G ^ {(} i) = 0 $ for some $ i $. Many of the properties of the corresponding classes of groups and rings can be transferred to these classes of multi-operator groups. A multi-operator group $ A $ is called a multi-operator (linear) $ \Omega $- algebra over a commutative associative ring $ k $ with an identity if the addition in $ A $ is commutative, if $ \Omega _ {1} = k $, where $ \Omega _ {1} $ is the set of unary operations from $ \Omega $, and if all operations from $ \Omega $ are semi-linear over $ k $( see [2][6], and Semi-linear mapping).

References

[1] P.J. Higgins, "Groups with multiple operators" Proc. London Math. Soc. , 6 (1956) pp. 366–416
[2] A.G. Kurosh, "Free sums of multi-operator algebras" Sibirsk. Mat. Zh. , 1 : 1 (1960) pp. 62–70 (In Russian)
[3] A.G. Kurosh, "Lectures on general algebra" , Chelsea (1963) (Translated from Russian)
[4] A.G. Kurosh, "General algebra. Lectures for the academic year 1969/70" , Moscow (1974) (In Russian)
[5] A.G. Kurosh, "Multioperator rings and algebras" Russian Math. Surveys , 24 : 1 (1969) pp. 1–13 Uspekhi Mat. Nauk. , 24 : 1 (1969) pp. 3–15
[6] T.M. Baranovich, M.S. Burgin, "Linear -algebras" Russian Math. Surveys , 30 : 4 (1975) pp. 65–113 Uspekhi Mat. Nauk. , 30 : 4 (1975) pp. 61–106
[7] V.A. Artamonov, "Universal algebras" Itogi Nauk. i Tekhn. Algebra. Topol. Geom. , 14 (1976) pp. 191–248 (In Russian)
[8] , Rings , 1 , Novosibirsk (1973) pp. 41–45
How to Cite This Entry:
Multi-operator group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multi-operator_group&oldid=18026
This article was adapted from an original article by V.A. Artamonov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article