Namespaces
Variants
Actions

Multi-dimensional variational problem

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


variational problem involving partial derivatives

A problem in the calculus of variations (cf. Variational calculus) in which it is required to determine an extremum of a functional depending on a function of several independent variables. Ordinary variational problems, in which functionals of functions of one independent variable are considered, may be called one-dimensional variational problems, in this sense.

An example of a two-dimensional variational problem is the problem of determining a function of two independent variables, $ u ( x , y ) $, which, together with its first-order partial derivatives, is continuous and yields an extremum of the functional

$$ \tag{1 } I ( u) = {\int\limits \int\limits } _ { D } F ( x , y , u , u _ {x} , u _ {y} ) d x d y $$

under the boundary condition

$$ \tag{2 } u ( x , y ) \mid _ {l} = \ u _ {0} ( x , y ) , $$

where $ l $ is a closed contour bounding a domain $ D $, $ u _ {0} ( x , y ) $ is a given function and $ F ( x , y , u , u _ {x} , u _ {y} ) $ is a twice continuously-differentiable function jointly in its arguments. Let $ u ( x , y ) $ be a solution of the problem (1), (2). Substitution of a comparison function $ u ( x , y ) + \alpha \eta ( x , y ) $, where $ \eta ( x , y ) \mid _ {l} = 0 $ and $ \alpha $ is a numerical parameter, into (1), differentiation with respect to $ \alpha $ and equating $ \alpha = 0 $, gives the following expression for the first variation of the functional:

$$ \tag{3 } \delta I = {\int\limits \int\limits } _ { D } ( F _ {u} \eta + F _ {u _ {x} } \eta _ {x} + F _ {u _ {y} } \eta _ {y} ) d x d y . $$

If $ u ( x , y ) $ has continuous second-order derivatives, then it is easy to show that a necessary condition for $ \delta I $ to vanish is:

$$ \tag{4 } F _ {u} - \frac \partial {\partial x } F _ {u _ {x} } - \frac \partial {\partial y } F _ {u _ {y} } = 0 . $$

Equation (4) is called the Euler–Ostrogradski equation (sometimes the Ostrogradski equation). This equation must be satisfied by a function $ u ( x , y ) $ which gives an extremum of (1) under the boundary conditions (2). The Euler–Ostrogradski equation is analogous to the Euler equation for one-dimensional problems. In expanded form, (4) is a second-order partial differential equation.

In the case of a triple integral and a function $ u ( x , y , z ) $ depending on three independent variables, the Euler–Ostrogradski equation takes the form:

$$ F _ {u} - \frac \partial {\partial x } F _ {u _ {x} } - \frac \partial {\partial y } F _ {u _ {y} } - \frac \partial {\partial z } F _ {u _ {z} } = 0 . $$

The following condition is an analogue of the Legendre condition. In order that $ u ( x , y ) $ gives at least a weak extremum of (1) it is necessary that at each interior point of $ D $,

$$ F _ {u _ {x} u _ {x} } F _ {u _ {y} u _ {y} } - F _ {u _ {x} u _ {y} } ^ { 2 } \geq 0 . $$

For a minimum necessarily $ F _ {u _ {x} u _ {x} } \geq 0 $, and for a maximum $ F _ {u _ {x} u _ {x} } \leq 0 $.

Discontinuous multi-dimensional variational problems have also been considered (see [4]).

References

[1] R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , 2 , Interscience (1965) (Translated from German)
[2] V.I. Smirnov, "A course of higher mathematics" , 4 , Addison-Wesley (1964) (Translated from Russian)
[3] N.I. Akhiezer, "The calculus of variations" , Blaisdell (1962) (Translated from Russian)
[4] M.K. Kerimov, "On two-dimensional continuous problems of variational calculus" Trudy Tbilis. Mat. Inst. Akad. Nauk GruzSSR , 18 (1951) pp. 209–219 (In Russian)
How to Cite This Entry:
Multi-dimensional variational problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multi-dimensional_variational_problem&oldid=47916
This article was adapted from an original article by I.B. Vapnyarskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article