Namespaces
Variants
Actions

Difference between revisions of "Mayer problem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
m0631501.png
 +
$#A+1 = 4 n = 0
 +
$#C+1 = 4 : ~/encyclopedia/old_files/data/M063/M.0603150 Mayer problem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
One of the fundamental problems in the calculus of variations (cf. [[Variational calculus|Variational calculus]]) on a conditional extremum. The Mayer problem is the following: Find a minimum of the functional
 
One of the fundamental problems in the calculus of variations (cf. [[Variational calculus|Variational calculus]]) on a conditional extremum. The Mayer problem is the following: Find a minimum of the functional
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063150/m0631501.png" /></td> </tr></table>
+
$$
 +
J ( y)  = g ( x _ {1} , y ( x _ {1} ) , x _ {2} , y ( x _ {2} ) ) ,\ \
 +
g: \mathbf R \times \mathbf R  ^ {n} \times \mathbf R \times \mathbf R  ^ {n}  \rightarrow  \mathbf R ,
 +
$$
  
 
in the presence of differential constraints of the type
 
in the presence of differential constraints of the type
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063150/m0631502.png" /></td> </tr></table>
+
$$
 +
\phi ( x , y , y  ^  \prime  )  = 0 ,\ \
 +
\phi : \mathbf R \times \mathbf R  ^ {n} \times \mathbf R  ^ {n}  \rightarrow  \mathbf R  ^ {m} ,\ \
 +
m < n ,
 +
$$
  
 
and boundary conditions
 
and boundary conditions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063150/m0631503.png" /></td> </tr></table>
+
$$
 +
\psi ( x _ {1} , y ( x _ {1} ) , x _ {2} , y ( x _ {2} ) )  = 0 ,\ \
 +
\psi : \mathbf R \times \mathbf R  ^ {n} \times \mathbf R \times \mathbf R  ^ {n}  \rightarrow \
 +
\mathbf R  ^ {p} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063150/m0631504.png" /></td> </tr></table>
+
$$
 +
< 2 n + 2 .
 +
$$
  
 
For details see [[Bolza problem|Bolza problem]].
 
For details see [[Bolza problem|Bolza problem]].
  
 
The Mayer problem is named after A. Mayer, who studied necessary conditions for its solution (at the end of the 19th century).
 
The Mayer problem is named after A. Mayer, who studied necessary conditions for its solution (at the end of the 19th century).

Latest revision as of 08:00, 6 June 2020


One of the fundamental problems in the calculus of variations (cf. Variational calculus) on a conditional extremum. The Mayer problem is the following: Find a minimum of the functional

$$ J ( y) = g ( x _ {1} , y ( x _ {1} ) , x _ {2} , y ( x _ {2} ) ) ,\ \ g: \mathbf R \times \mathbf R ^ {n} \times \mathbf R \times \mathbf R ^ {n} \rightarrow \mathbf R , $$

in the presence of differential constraints of the type

$$ \phi ( x , y , y ^ \prime ) = 0 ,\ \ \phi : \mathbf R \times \mathbf R ^ {n} \times \mathbf R ^ {n} \rightarrow \mathbf R ^ {m} ,\ \ m < n , $$

and boundary conditions

$$ \psi ( x _ {1} , y ( x _ {1} ) , x _ {2} , y ( x _ {2} ) ) = 0 ,\ \ \psi : \mathbf R \times \mathbf R ^ {n} \times \mathbf R \times \mathbf R ^ {n} \rightarrow \ \mathbf R ^ {p} , $$

$$ p < 2 n + 2 . $$

For details see Bolza problem.

The Mayer problem is named after A. Mayer, who studied necessary conditions for its solution (at the end of the 19th century).

How to Cite This Entry:
Mayer problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mayer_problem&oldid=47810
This article was adapted from an original article by I.B. Vapnyarskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article