Namespaces
Variants
Actions

Difference between revisions of "Lyapunov transformation"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(gather refs)
 
(One intermediate revision by one other user not shown)
Line 17: Line 17:
  
 
$$  
 
$$  
\sup _ {t \in \mathbf R } [ \| L ( t) \| + \| L  ^ {-} 1 ( t)
+
\sup _ {t \in \mathbf R } [ \| L ( t) \| + \| L  ^ {-1} ( t)
 
\| + \| \dot{L} ( t) \| ]  <  + \infty .
 
\| + \| \dot{L} ( t) \| ]  <  + \infty .
 
$$
 
$$
Line 30: Line 30:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.M. Lyapunov,  "Stability of motion" , Acad. Press  (1966)  (Translated from Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.M. Lyapunov,  "Stability of motion" , Acad. Press  (1966)  (Translated from Russian)</TD></TR>
 
+
<TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Hahn,  "Stability of motion" , Springer  (1967)  pp. 422</TD></TR></table>
====Comments====
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Hahn,  "Stability of motion" , Springer  (1967)  pp. 422</TD></TR></table>
 

Latest revision as of 15:55, 1 May 2023


A non-degenerate linear transformation $ L ( t) : \mathbf R ^ {n} \rightarrow \mathbf R ^ {n} $( or $ L ( t) : \mathbf C ^ {n} \rightarrow \mathbf C ^ {n} $), smoothly depending on a parameter $ t \in \mathbf R $, that satisfies the condition

$$ \sup _ {t \in \mathbf R } [ \| L ( t) \| + \| L ^ {-1} ( t) \| + \| \dot{L} ( t) \| ] < + \infty . $$

It was introduced by A.M. Lyapunov in 1892 (see [1]). The Lyapunov transformation is widely used in the theory of linear systems of ordinary differential equations. In many cases the requirement

$$ \sup _ {t \in \mathbf R } \| \dot{L} ( t) \| < + \infty $$

can be discarded.

References

[1] A.M. Lyapunov, "Stability of motion" , Acad. Press (1966) (Translated from Russian)
[a1] W. Hahn, "Stability of motion" , Springer (1967) pp. 422
How to Cite This Entry:
Lyapunov transformation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lyapunov_transformation&oldid=47733
This article was adapted from an original article by V.M. Millionshchikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article