Namespaces
Variants
Actions

Difference between revisions of "Logarithmic function"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(gather refs)
 
(2 intermediate revisions by one other user not shown)
Line 34: Line 34:
  
 
$$  
 
$$  
y  =  \mathop{\rm log} _ {a}  x ,
+
y  =  \mathrm{log} _ {a}  x ,
 
$$
 
$$
  
where  $  a > 0 $(
+
where  $  a > 0 $ ($  a \neq 1 $)  
$  a \neq 1 $)  
 
 
is an arbitrary base of the logarithm; this function can be expressed in terms of  $  \mathop{\rm ln}  x $
 
is an arbitrary base of the logarithm; this function can be expressed in terms of  $  \mathop{\rm ln}  x $
 
by the formula
 
by the formula
  
 
$$  
 
$$  
  \mathop{\rm log} _ {a}  x  =   
+
  \mathrm{log} _ {a}  x  =   
 
\frac{ \mathop{\rm ln}  x }{ \mathop{\rm ln}  a }
 
\frac{ \mathop{\rm ln}  x }{ \mathop{\rm ln}  a }
 
  .
 
  .
Line 86: Line 85:
 
\frac{1}{x}
 
\frac{1}{x}
 
  ,\ \  
 
  ,\ \  
(  \mathop{\rm log} _ {a}  x )  ^  \prime  = \  
+
(  \mathrm{log} _ {a}  x )  ^  \prime  = \  
  
\frac{ \mathop{\rm log} _ {a}  e }{x}
+
\frac{ \mathrm{log} _ {a}  e }{x}
 
   = \  
 
   = \  
  
Line 112: Line 111:
  
 
The logarithmic function on the complex plane is an infinitely-valued function, defined for all values of the argument  $  z \neq 0 $,  
 
The logarithmic function on the complex plane is an infinitely-valued function, defined for all values of the argument  $  z \neq 0 $,  
and is denoted by  $  \mathop{\rm Ln}  z $(
+
and is denoted by  $  \mathop{\rm Ln}  z $ (
 
or  $  \mathop{\rm ln}  z $
 
or  $  \mathop{\rm ln}  z $
 
if no confusion arises). The single-valued branch of this function defined by
 
if no confusion arises). The single-valued branch of this function defined by
Line 138: Line 137:
 
$$
 
$$
  
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.M. Nikol'skii,  "A course of mathematical analysis" , '''1''' , MIR  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.I. Markushevich,  "Theory of functions of a complex variable" , '''1''' , Chelsea  (1977)  (Translated from Russian)</TD></TR></table>
 
  
 
====Comments====
 
====Comments====
The principal value of the logarithm maps the punctured complex  $  z $-
+
The principal value of the logarithm maps the punctured complex  $  z $-plane  $  ( z \neq 0) $
plane  $  ( z \neq 0) $
 
 
onto the strip  $  - \pi <  \mathop{\rm Ln}  z \leq  \pi $
 
onto the strip  $  - \pi <  \mathop{\rm Ln}  z \leq  \pi $
in the complex  $  w $-
+
in the complex  $  w $-plane. To fill the  $  w $-plane one has to map infinitely many copies of the  $  z $-plane, where for the  $  n $-th copy one has  $  - \pi + 2 n \pi <  \mathop{\rm arg}  z \leq  \pi + 2 n \pi $,  
plane. To fill the  $  w $-
 
plane one has to map infinitely many copies of the  $  z $-
 
plane, where for the  $  n $-
 
th copy one has  $  - \pi + 2 n \pi <  \mathop{\rm arg}  z \leq  \pi + 2 n \pi $,  
 
 
$  n = 0 , \pm  1 ,\dots $.  
 
$  n = 0 , \pm  1 ,\dots $.  
 
In this case  $  0 $
 
In this case  $  0 $
 
is a [[Branch point|branch point]]. The copies make up the so-called [[Riemann surface|Riemann surface]] of the logarithmic function. Clearly,  $  \mathop{\rm ln}  z $
 
is a [[Branch point|branch point]]. The copies make up the so-called [[Riemann surface|Riemann surface]] of the logarithmic function. Clearly,  $  \mathop{\rm ln}  z $
 
is a one-to-one mapping of this surface  $  ( z \neq 0 ) $
 
is a one-to-one mapping of this surface  $  ( z \neq 0 ) $
onto the  $  w $-
+
onto the  $  w $-plane. The derivative of the principal value is  $  1 / z $ (as in the real case) for  $  - \pi <  \mathop{\rm arg}  z < \pi $.
plane. The derivative of the principal value is  $  1 / z $(
 
as in the real case) for  $  - \pi <  \mathop{\rm arg}  z < \pi $.
 
  
 
Instead of  $  \mathop{\rm ln} $
 
Instead of  $  \mathop{\rm ln} $
 
and  $  \mathop{\rm Ln} $,  
 
and  $  \mathop{\rm Ln} $,  
 
many Western writers of post-calculus mathematics use  $  \mathop{\rm log} $
 
many Western writers of post-calculus mathematics use  $  \mathop{\rm log} $
and  $  \mathop{\rm Log} $(
+
and  $  \mathop{\rm Log} $ (see also (the editorial comments to) [[Logarithm of a number|Logarithm of a number]]).
see also (the editorial comments to) [[Logarithm of a number|Logarithm of a number]]).
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.B. Conway,  "Functions of one complex variable" , Springer  (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E. Marsden,  "Basic complex analysis" , Freeman  (1973)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  E.C. Titchmarsh,  "The theory of functions" , Oxford Univ. Press  (1979)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  S. Saks,  A. Zygmund,  "Analytic functions" , PWN  (1952)  (Translated from Polish)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  K.R. Stromberg,  "Introduction to classical real analysis" , Wadsworth  (1981)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.M. Nikol'skii,  "A course of mathematical analysis" , '''1''' , MIR  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.I. Markushevich,  "Theory of functions of a complex variable" , '''1''' , Chelsea  (1977)  (Translated from Russian)</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  J.B. Conway,  "Functions of one complex variable" , Springer  (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E. Marsden,  "Basic complex analysis" , Freeman  (1973)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  E.C. Titchmarsh,  "The theory of functions" , Oxford Univ. Press  (1979)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  S. Saks,  A. Zygmund,  "Analytic functions" , PWN  (1952)  (Translated from Polish)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  K.R. Stromberg,  "Introduction to classical real analysis" , Wadsworth  (1981)</TD></TR></table>

Latest revision as of 12:10, 1 May 2023


logarithm

The function inverse to the exponential function. The logarithmic function is denoted by

$$ \tag{1 } y = \mathop{\rm ln} x ; $$

its value $ y $, corresponding to the value of the argument $ x $, is called the natural logarithm of $ x $. From the definition, relation (1) is equivalent to

$$ \tag{2 } x = e ^ {y} . $$

Since $ e ^ {y} > 0 $ for any real $ y $, the logarithmic function is defined only for $ x > 0 $. In a more general sense a logarithmic function is a function

$$ y = \mathrm{log} _ {a} x , $$

where $ a > 0 $ ($ a \neq 1 $) is an arbitrary base of the logarithm; this function can be expressed in terms of $ \mathop{\rm ln} x $ by the formula

$$ \mathrm{log} _ {a} x = \frac{ \mathop{\rm ln} x }{ \mathop{\rm ln} a } . $$

The logarithmic function is one of the main elementary functions; its graph (see Fig.) is called a logarithmic curve.

Figure: l060600a

The main properties of the logarithmic function follow from the corresponding properties of the exponential function and logarithms; for example, the logarithmic function satisfies the functional equation

$$ \mathop{\rm ln} x + \mathop{\rm ln} y = \mathop{\rm ln} x y . $$

The logarithmic function $ y = \mathop{\rm ln} x $ is a strictly-increasing function, and $ \lim\limits _ {x \downarrow 0 } \mathop{\rm ln} x = - \infty $, $ \lim\limits _ {x \rightarrow \infty } \mathop{\rm ln} x = + \infty $. At every point $ x > 0 $ the logarithmic function has derivatives of all orders and in a sufficiently small neighbourhood it can be expanded in a power series, that is, it is an analytic function. For $ - 1 < x \leq 1 $ the following expansion of the (natural) logarithmic function is valid:

$$ \mathop{\rm ln} ( 1 + x ) = x - \frac{x ^ {2}}{2} + \frac{x ^ {3}}{3} - \frac{x ^ {4}}{4} + \dots . $$

The derivative of the logarithmic function is

$$ ( \mathop{\rm ln} x ) ^ \prime = \frac{1}{x} ,\ \ ( \mathrm{log} _ {a} x ) ^ \prime = \ \frac{ \mathrm{log} _ {a} e }{x} = \ \frac{1}{x \mathop{\rm ln} a } . $$

Many integrals can be expressed in terms of the logarithmic function; for example:

$$ \int\limits \frac{dx}{x} = \mathop{\rm ln} | x | + C , $$

$$ \int\limits \frac{dx}{\sqrt {x ^ {2} + a } } = \mathop{\rm ln} ( x + \sqrt {x ^ {2} + a } ) + C . $$

The dependence between variable quantities expressed by the logarithmic function was first considered by J. Napier in 1614.

The logarithmic function on the complex plane is an infinitely-valued function, defined for all values of the argument $ z \neq 0 $, and is denoted by $ \mathop{\rm Ln} z $ ( or $ \mathop{\rm ln} z $ if no confusion arises). The single-valued branch of this function defined by

$$ \mathop{\rm ln} z = \mathop{\rm ln} | z | + i \mathop{\rm arg} z , $$

where $ \mathop{\rm arg} z $ is the principal value of the argument of the complex number $ z $, $ \pi < \mathop{\rm arg} z \leq \pi $, is called the principal value of the logarithmic function. One has

$$ \mathop{\rm Ln} z = \mathop{\rm ln} z + 2 k \pi i ,\ \ k = 0 , \pm 1 ,\dots . $$

All values of the logarithmic function for negative real $ z $ are purely imaginary complex numbers. The first satisfactory theory of the logarithmic function for complex arguments was given by L. Euler in 1749; he started from the definition

$$ \mathop{\rm Ln} z = \lim\limits _ {n \rightarrow \infty } n ( z ^ {1/n} - 1 ) . $$


Comments

The principal value of the logarithm maps the punctured complex $ z $-plane $ ( z \neq 0) $ onto the strip $ - \pi < \mathop{\rm Ln} z \leq \pi $ in the complex $ w $-plane. To fill the $ w $-plane one has to map infinitely many copies of the $ z $-plane, where for the $ n $-th copy one has $ - \pi + 2 n \pi < \mathop{\rm arg} z \leq \pi + 2 n \pi $, $ n = 0 , \pm 1 ,\dots $. In this case $ 0 $ is a branch point. The copies make up the so-called Riemann surface of the logarithmic function. Clearly, $ \mathop{\rm ln} z $ is a one-to-one mapping of this surface $ ( z \neq 0 ) $ onto the $ w $-plane. The derivative of the principal value is $ 1 / z $ (as in the real case) for $ - \pi < \mathop{\rm arg} z < \pi $.

Instead of $ \mathop{\rm ln} $ and $ \mathop{\rm Ln} $, many Western writers of post-calculus mathematics use $ \mathop{\rm log} $ and $ \mathop{\rm Log} $ (see also (the editorial comments to) Logarithm of a number).

References

[1] S.M. Nikol'skii, "A course of mathematical analysis" , 1 , MIR (1977) (Translated from Russian)
[2] A.I. Markushevich, "Theory of functions of a complex variable" , 1 , Chelsea (1977) (Translated from Russian)
[a1] J.B. Conway, "Functions of one complex variable" , Springer (1973)
[a2] E. Marsden, "Basic complex analysis" , Freeman (1973)
[a3] E.C. Titchmarsh, "The theory of functions" , Oxford Univ. Press (1979)
[a4] S. Saks, A. Zygmund, "Analytic functions" , PWN (1952) (Translated from Polish)
[a5] K.R. Stromberg, "Introduction to classical real analysis" , Wadsworth (1981)
How to Cite This Entry:
Logarithmic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Logarithmic_function&oldid=47701
This article was adapted from an original article by BSE-3 (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article