Lebesgue function
A function
L _ {n} ^ \Phi ( t) = \int\limits _ { a } ^ { b } \left | \sum _ { k= } 1 ^ { n } \phi _ {k} ( x) \phi _ {k} ( t) \right | d x ,\ t \in [ a , b ] ,
where \Phi = \{ \phi _ {k} \} _ {k=} 1 ^ \infty is a given system of functions, orthonormal with respect to the Lebesgue measure on the interval [ a , b ] , n = 1 , 2 , . . . . Lebesgue functions are defined similarly in the case when an orthonormal system is specified on an arbitrary measure space. One has
L _ {n} ^ \Phi ( t) = \ \sup _ {f : \| f \| _ {C [ a , b ] } \leq 1 } | S _ {n} ( f ) | ,\ \ t \in [ a , b ] ,
where
S _ {n} ( f ) ( t) = \sum _ { k= } 1 ^ { n } c _ {k} ( f ) \phi _ {k} ( t)
is the n - th partial sum of the Fourier series of f with respect to \Phi . In the case when \Phi is the trigonometric system, the Lebesgue functions are constant and reduce to the Lebesgue constants. They were introduced by H. Lebesgue.
References
[1] | S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951) |
Lebesgue function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lebesgue_function&oldid=47601