Namespaces
Variants
Actions

Difference between revisions of "Lambda-ring"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX partially done)
m (better)
 
(8 intermediate revisions by the same user not shown)
Line 9: Line 9:
 
Examples are, for instance, the topological $K$-groups $K(M)$ and $K_G(M)$, $G$ a compact Lie group (cf. [[K-theory|$K$-theory]]), and the complex representation ring $R(G)$ of a finite group $G$ (cf. [[Representation of a compact group]]). In all these cases the $\lambda^n$ are induced by taking exterior powers. For instance, for $M = \text{pt}$, $K(M) = \mathbf{Z}$ and the $\lambda$-structure is given by $\lambda^n(m) = \binom{m}{n}$ (binomial coefficients; the formula $\binom{m_1+m_2}{n} = \sum_{i+j=n} \binom{m_1}{i} \binom{m_2}{j}$ follows by the binomial expansion theorem from $(X+Y)^{m_1+m_2} = (X+Y)^{m_1} (X+Y)^{m_2}$.
 
Examples are, for instance, the topological $K$-groups $K(M)$ and $K_G(M)$, $G$ a compact Lie group (cf. [[K-theory|$K$-theory]]), and the complex representation ring $R(G)$ of a finite group $G$ (cf. [[Representation of a compact group]]). In all these cases the $\lambda^n$ are induced by taking exterior powers. For instance, for $M = \text{pt}$, $K(M) = \mathbf{Z}$ and the $\lambda$-structure is given by $\lambda^n(m) = \binom{m}{n}$ (binomial coefficients; the formula $\binom{m_1+m_2}{n} = \sum_{i+j=n} \binom{m_1}{i} \binom{m_2}{j}$ follows by the binomial expansion theorem from $(X+Y)^{m_1+m_2} = (X+Y)^{m_1} (X+Y)^{m_2}$.
  
Let $R$ be any commutative ring with unit element 1. Consider the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701027.png" /> of power series in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701028.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701029.png" /> with constant term 1. Multiplication of power series turns <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701030.png" /> into an Abelian group. A pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701031.png" />-ring structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701032.png" /> defines a homomorphism of Abelian groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701034.png" />, and vice versa.
+
Let $R$ be any commutative ring with unit element 1. Consider the set $\Lambda(R) = 1 + t R[[t]]$ of power series in $t$ over $R$ with constant term 1. Multiplication of power series turns $\Lambda(R)$ into an Abelian group. A pre-$\lambda$-ring structure on $\Lambda(R)$ defines a homomorphism of Abelian groups $\lambda_t : R \rightarrow \Lambda(R)$, $\lambda_t(x) = \lambda^0(x) + \lambda^1(x) t + \lambda^2(x) t^2 + \cdots$, and vice versa.
 
 
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701036.png" /> be two elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701037.png" />. Formally, write
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701038.png" /></td> </tr></table>
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701039.png" /></td> </tr></table>
 
  
 +
Let $\alpha(t) = 1 + a_1 t + a_2 t^2 + \cdots$, $\beta(t) = 1 + b_1 t + b_2 t^2 + \cdots$ be two elements of $\Lambda(R)$. Formally, write
 +
$$
 +
\alpha(t) = \prod_{i=1}^\infty \left({ 1 - \xi_i t }\right)
 +
$$
 +
$$
 +
\beta(t) = \prod_{i=1}^\infty \left({ 1 - \eta_i t }\right)
 +
$$
 
and consider the expressions
 
and consider the expressions
 +
$$
 +
\prod_{i,j=1}^\infty \left({ 1 - \xi_i \eta_j t }\right) = 1 + P_1 t + P_2 t^2 + \cdots \ ,
 +
$$
 +
$$
 +
\prod_{i_1 < i_2 < \cdots < i_n}^\infty \left({ 1 - \xi_{i_1} \xi_{i_2} \cdots \xi_{i_n} t }\right) = 1 + L_{1,n} t + L_{2,n} t^2 + \cdots \ .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701040.png" /></td> </tr></table>
+
The $P_i$ and $L_{i,n}$ are symmetric polynomial expressions in the $\xi$'s and $\eta$'s and hence can be written as universal polynomial expressions in the $a$'s and $b$'s. Now define a multiplication on $\Lambda(R)$ by
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701041.png" /></td> </tr></table>
+
\alpha(t) * \beta(t) = 1 + P_1(a,b) t + P_2(a,b) t^2 + \cdots
 +
$$
 +
($a = (a_1,a_2,\ldots)$, $b = (b_1,b_2,\ldots)$), and define operations (mappings) $\lambda^n : \Lambda(R) \rightarrow \Lambda(R)$ by
 +
$$
 +
\lambda^n \alpha(t) = 1 + L_{1,n}(a,b) t + L_{2,n}(a,b) t^2 + \cdots \ .
 +
$$
  
The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701042.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701043.png" /> are symmetric polynomial expressions in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701044.png" />'s and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701045.png" />'s and hence can be written as universal polynomial expressions in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701046.png" />'s and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701047.png" />'s. Now define a multiplication on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701048.png" /> by
+
The ring $\Lambda(R)$ with these operations is a pre-$\lambda$-ring. Given two pre-$\lambda$-rings $R_1$, $R_2$, a $\lambda$-ring homomorphism $\phi : R_1 \rightarrow R_2$ is a homomorphism of rings such that $\phi(\lambda^n(x)) = \lambda^n(\phi(x))$ for all $x \in R_1$, $n = 0,1,2,\ldots$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701049.png" /></td> </tr></table>
+
A pre-$\lambda$-ring $R$ is a $\lambda$-ring if $\lambda_{-t} : R \rightarrow \Lambda(R)$, $\lambda_{-t}(x) = 1 - \lambda^1(x) t + \lambda^2(x) t^2 - \cdots$, is a homomorphism of pre-$\lambda$-rings. The ring $\Lambda(R)$ is always a $\lambda$-ring and so are the standard examples $K(M)$, $K_G(M)$, $R(G)$ of pre-$\lambda$-rings mentioned above.
  
(<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701050.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701051.png" />), and define operations (mappings) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701052.png" /> by
+
On the other hand, consider a finite group $G$. A finite $G$-set is a finite set together with a [[group action]] of $G$. Using disjoint union and Cartesian products with diagonal action, the isomorphism classes of finite $G$-sets form a [[semi-ring]], $A^+(G)$. The associated [[Grothendieck ring]] $A(G)$ is called the ''Burnside ring''. On $A^+(G)$, define operations $\lambda^n : A^+(G) \rightarrow A^+(G)$ by taking $\lambda^n(S)$ to be the set of$n$-element subsets of $S$ with the natural induced $G$-action. This generalizes the $\lambda$-operations $\lambda^n$ on $\mathbf{N} \subset \mathbf{Z}$, $\lambda^n(m) = \binom{m}{n}$. Using iii), the $\lambda^n$ extend to $A(G)$, making the Burnside ring into a pre-$\lambda$-ring. As a rule this pre-$\lambda$-ring is not a $\lambda$-ring, [[#References|[a9]]].
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701053.png" /></td> </tr></table>
+
Instead of pre-$\lambda$-ring and $\lambda$-ring one also finds, respectively, the phrases $\lambda$-ring and special $\lambda$-ring in the literature.
  
The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701054.png" /> with these operations is a pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701055.png" />-ring. Given two pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701056.png" />-rings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701057.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701058.png" />, a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701059.png" />-ring homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701060.png" /> is a homomorphism of rings such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701061.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701062.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701063.png" />.
+
Let $R$ be a pre-$\lambda$-ring. One defines new operations $\psi^i : R \rightarrow R$ by the formula
 +
$$
 +
-t \frac{d}{dt} \log \lambda_{-t} (x) = \sum_{i=1}^\infty \psi^i(x) t^i \ .
 +
$$
  
A pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701064.png" />-ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701065.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701067.png" />-ring if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701068.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701069.png" />, is a homomorphism of pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701070.png" />-rings. The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701071.png" /> is always a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701072.png" />-ring and so are the standard examples <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701073.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701074.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701075.png" /> of pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701076.png" />-rings mentioned above.
+
These operations are called the ''Adams operations'' on the pre-$\lambda$-ring $R$. They were introduced in the case $R = K(M)$ by J.F. Adams ([[#References|[a10]]]).
 
 
On the other hand, consider a finite group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701077.png" />. A finite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701079.png" />-set is a finite set together with an action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701080.png" /> on it. Using disjoint union and Cartesian products with diagonal action, the isomorphism classes of finite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701081.png" />-sets form a [[Semi-ring|semi-ring]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701082.png" />. The associated Grothendieck ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701083.png" /> (cf. [[Grothendieck group|Grothendieck group]]) is called the Burnside ring. On <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701084.png" />, define operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701085.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701086.png" />(set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701087.png" />-element subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701088.png" />) (with the natural induced <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701089.png" />-action). This generalizes the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701090.png" />-operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701091.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701092.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701093.png" />. Using iii), the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701094.png" /> extend to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701095.png" />, making the Burnside ring into a pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701096.png" />-ring. As a rule this pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701097.png" />-ring is not a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701098.png" />-ring, [[#References|[a9]]].
 
 
 
Instead of pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701099.png" />-ring and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010100.png" />-ring one also finds, respectively, the phrases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010101.png" />-ring and special <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010103.png" />-ring in the literature.
 
 
 
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010104.png" /> be a pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010105.png" />-ring. One defines new operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010106.png" /> by the formula
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010107.png" /></td> </tr></table>
 
 
 
These operations are called the Adams operations on the pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010108.png" />-ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010109.png" />. They were introduced in the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010110.png" /> by J.F. Adams ([[#References|[a10]]]).
 
  
 
The Adams operations satisfy
 
The Adams operations satisfy
  
iv) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010111.png" />;
+
iv) $\Psi^1(x) = x$;
 
 
v) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010112.png" />.
 
 
 
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010113.png" /> be a torsion-free pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010114.png" />-ring; then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010115.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010116.png" />-ring if and only if the Adams operations satisfy in addition
 
 
 
vi) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010117.png" />;
 
 
 
vii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010118.png" />;
 
 
 
viii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010119.png" />.
 
  
A ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010120.png" /> with operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010121.png" /> satisfying iv)–viii) is sometimes called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010123.png" />-ring.
+
v) $\Psi^n(x+y) = \Psi^n(x) + \Psi^n(y)$.
  
The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010124.png" /> is isomorphic to the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010125.png" /> of (big) Witt vectors (cf. (the editorial comments to) [[Witt vector|Witt vector]]):
+
Let $R$ be a torsion-free pre-$\lambda$-ring; then $R$ is a $\lambda$-ring if and only if the Adams operations satisfy in addition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010126.png" /></td> </tr></table>
+
vi) $\Psi^i(1) = 1$;
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010127.png" /></td> </tr></table>
+
vii) $\Psi^n(xy) = \Psi^n(x) \Psi^n(y)$;
  
Under this isomorphism the Adams operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010128.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010129.png" /> correspond to the Frobenius operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010130.png" />.
+
viii) $\Psi^{ij}(x) = \Psi^i(\Psi^j(x))$.
  
The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010131.png" />-structures on the rings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010132.png" /> define a functorial morphism of ring-valued functors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010133.png" />. Together with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010134.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010135.png" />, this defines a co-triple structure on the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010136.png" />, and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010137.png" />-rings are precisely the co-algebras of this co-triple (cf. [[Triple|Triple]]).
+
A ring $R$ with operations $\Psi^i$ satisfying iv)–viii) is sometimes called a ''$\Psi$-ring''.
  
Via the isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010138.png" /> one finds "exponential homomorphisms"
+
The ring $\Lambda(R)$ is isomorphic to the ring $W(R)$ of (big) Witt vectors (cf. (the editorial comments to) [[Witt vector|Witt vector]]):
 +
$$
 +
\bar E : W(R) \rightarrow \Lambda(R)
 +
$$
 +
$$
 +
(a_1,a_2,\ldots) \mapsto \prod_{i=1}^\infty \left({ 1 - a_i t^i }\right)
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010139.png" /></td> </tr></table>
+
Under this isomorphism the Adams operations $\Psi^n$ on $\Lambda(R)$ correspond to the Frobenius operations $\mathbf{f}_n : W(R) \rightarrow W(R)$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010140.png" /></td> </tr></table>
+
The $\lambda$-structures on the rings $\Lambda(R)$ define a functorial morphism of ring-valued functors $\lambda_{-t}(\cdot) : \Lambda(\cdot) \rightarrow \Lambda(\Lambda(\cdot)) $. Together with $\Lambda(R) \rightarrow R$, $1 + a_1 t + a_2 t^2 + \cdots \mapsto a_1$, this defines a [[co-triple]] structure on the functor $\Lambda$, and the $\lambda$-rings are precisely the [[co-algebra]]s of this co-triple.
  
 +
Via the isomorphism $\bar E$ one finds "exponential homomorphisms"
 +
$$
 +
E : W(R) \rightarrow W(W(R))
 +
$$
 +
$$
 +
E' : W(R) \rightarrow \Lambda(W(R))
 +
$$
 
which should be seen as (generalizing) the so-called [[Artin–Hasse exponential]] ([[#References|[a11]]], [[#References|[a12]]]).
 
which should be seen as (generalizing) the so-called [[Artin–Hasse exponential]] ([[#References|[a11]]], [[#References|[a12]]]).
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010141.png" /> be the ring homomorphism
+
Let $w_n(R) : W(R) \rightarrow R$ be the ring homomorphism
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010142.png" /></td> </tr></table>
+
w_n (a_1,a_2,\ldots) = \sum_{d|n} d a_d^{n/d} \ .
 
+
$$
Then the Artin–Hasse exponential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010143.png" /> is functorially characterized by
+
Then the Artin–Hasse exponential $E(R) : W(R) \rightarrow W(W(R))$ is functorially characterized by
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010144.png" /></td> </tr></table>
+
w_n(W(R)) \circ E(R) = \mathbf{f}_n(R)
 
+
$$
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010145.png" /> is the Frobenius homomorphism.
+
where $\mathbf{f}_n$ is the Frobenius homomorphism.
 
 
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010146.png" /> be the forgetful functor. Then the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010147.png" /> is right adjoint (cf. [[Adjoint functor|Adjoint functor]]) to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010148.png" />:
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010149.png" /></td> </tr></table>
 
  
 +
Let $V : \lambda\textsf{-Ring} \rightarrow \textsf{Ring}$ be the forgetful functor. Then the functor $\Lambda : \textsf{Ring} \rightarrow \lambda\textsf{-Ring}$ is right adjoint (cf. [[Adjoint functor]]) to $V$:
 +
$$
 +
\textsf{Ring}(V(S),R) \equiv \lambda\textsf{-Ring}(S,\Lambda(R))
 +
$$
 
(cf. [[#References|[a5]]], p. 20).
 
(cf. [[#References|[a5]]], p. 20).
  
There are (besides the identity) three natural automorphisms of the Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010150.png" />, given by the substitution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010151.png" />, the "inversion" <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010152.png" />, and the combination of the two. Correspondingly there are four natural ways to introduce a ring structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010153.png" />; the corresponding unit elements are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010154.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010155.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010156.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010157.png" />. All four occur in the literature. The most frequently occurring have <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010158.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010159.png" /> as their unit element — here, in the above, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010160.png" /> is the unit element —, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010161.png" /> seems to be the most rare case.
+
There are (besides the identity) three natural automorphisms of the Abelian group $\Lambda(R) = 1 + t R[[t]]$, given by the substitution $t \mapsto -t$, the "inversion" $\alpha(t) \mapsto \alpha(t)^{-1}$, and the combination of the two. Correspondingly there are four natural ways to introduce a ring structure on $\Lambda(R)$; the corresponding unit elements are $1-t$, $1+t$, $(1-t)^{-1}$, $(1+t)^{-1}$. All four occur in the literature. The most frequently occurring have $1-t$ or $1+t$ as their unit element — here, in the above, $1-t$ is the unit element —, and $(1+t)^{-1}$ seems to be the most rare case.
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010162.png" />-rings were introduced by A. Grothendieck in an algebraic-geometric setting [[#References|[a2]]] and were first used in group representation theory by M.F. Atiyah and D.O. Tall ([[#References|[a1]]]).
+
$\lambda$-rings were introduced by A. Grothendieck in an algebraic-geometric setting [[#References|[a2]]] and were first used in group representation theory by M.F. Atiyah and D.O. Tall ([[#References|[a1]]]).
  
In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010163.png" /> is one-dimensional, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010164.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010165.png" />, the terminology derives from the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010166.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010167.png" />; one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010168.png" />, whence the name power operations for the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010169.png" />. On the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010170.png" /> the operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010171.png" /> are directly defined by
+
In case $x \in R$ is one-dimensional, i.e. $\lambda^n(x) = 0$ for $n \ge 2$, the terminology derives from the case $R = K(M)$ or $R = R(G)$; one has $\Psi^n(x) = x^n$, whence the name ''power operations'' for the $\Psi^n$. On the $\Lambda(R)$ the operations $\Psi^n$ are directly defined by
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l057010172.png" /></td> </tr></table>
+
\Psi^n \left({ \prod_{i=1}^\infty (1 - \xi_i t) }\right) = \prod_{i=1}^\infty (1 - \xi_i^n t) \ .
 +
$$
  
 
====References====
 
====References====
Line 114: Line 123:
 
<TR><TD valign="top">[a8]</TD> <TD valign="top"> T. tom Dieck, "Transformation groups and representation theory" , Springer (1979) {{MR|}} {{ZBL|0445.57023}} </TD></TR>
 
<TR><TD valign="top">[a8]</TD> <TD valign="top"> T. tom Dieck, "Transformation groups and representation theory" , Springer (1979) {{MR|}} {{ZBL|0445.57023}} </TD></TR>
 
<TR><TD valign="top">[a9]</TD> <TD valign="top"> C. Siebeneicher, "$\lambda$-Ringstrukturen auf dem Burnsidering der Permutationsdarstellungen einer endlichen Gruppe" ''Math. Z.'' , '''146''' (1976) pp. 223–238 {{MR|0390035}} {{ZBL|0306.20011}} </TD></TR>
 
<TR><TD valign="top">[a9]</TD> <TD valign="top"> C. Siebeneicher, "$\lambda$-Ringstrukturen auf dem Burnsidering der Permutationsdarstellungen einer endlichen Gruppe" ''Math. Z.'' , '''146''' (1976) pp. 223–238 {{MR|0390035}} {{ZBL|0306.20011}} </TD></TR>
<TR><TD valign="top">[a10]</TD> <TD valign="top"> J.F. Adams, "Vectorfields on spheres" ''Ann. of Math.'' , '''75''' (1962) pp. 603–632</TD></TR>
+
<TR><TD valign="top">[a10]</TD> <TD valign="top"> J.F. Adams, "Vectorfields on spheres" ''Ann. of Math.'' , '''75''' (1962) pp. 603–632 {{DOI|10.2307/1970213}} {{ZBL|0112.38102}}</TD></TR>
 
<TR><TD valign="top">[a11]</TD> <TD valign="top"> M. Hazewinkel, "Twisted Lubin–Tate formal group laws, ramified Witt vectors and (ramified) Artin–Hasse exponentials" ''Trans. Amer. Math. Soc.'' , '''259''' (1980) pp. 47–63 {{MR|0561822}} {{ZBL|0437.13014}} </TD></TR>
 
<TR><TD valign="top">[a11]</TD> <TD valign="top"> M. Hazewinkel, "Twisted Lubin–Tate formal group laws, ramified Witt vectors and (ramified) Artin–Hasse exponentials" ''Trans. Amer. Math. Soc.'' , '''259''' (1980) pp. 47–63 {{MR|0561822}} {{ZBL|0437.13014}} </TD></TR>
 
<TR><TD valign="top">[a12]</TD> <TD valign="top"> E. Artin, H. Hasse, "Die beide Ergänzungssätze zum Reciprozitätsgesetz der $\ell^n$-ten Potenzreste im Körper der $\ell^n$-ten Einheitswurzeln" ''Abh. Math. Sem. Univ. Hamburg'' , '''6''' (1928) pp. 146–162</TD></TR>
 
<TR><TD valign="top">[a12]</TD> <TD valign="top"> E. Artin, H. Hasse, "Die beide Ergänzungssätze zum Reciprozitätsgesetz der $\ell^n$-ten Potenzreste im Körper der $\ell^n$-ten Einheitswurzeln" ''Abh. Math. Sem. Univ. Hamburg'' , '''6''' (1928) pp. 146–162</TD></TR>
 
<TR><TD valign="top">[a13]</TD> <TD valign="top"> G. Whaples, "Generalized local class field theory III: Second form of the existence theorem, structure of analytic groups" ''Duke Math. J.'' , '''21''' (1954) pp. 575–581 {{MR|73645}} {{ZBL|}} </TD></TR>
 
<TR><TD valign="top">[a13]</TD> <TD valign="top"> G. Whaples, "Generalized local class field theory III: Second form of the existence theorem, structure of analytic groups" ''Duke Math. J.'' , '''21''' (1954) pp. 575–581 {{MR|73645}} {{ZBL|}} </TD></TR>
 
</table>
 
</table>
 +
 +
{{TEX|done}}

Latest revision as of 07:44, 23 March 2016

A pre-$\lambda$-ring is a commutative ring $R$ with identity element $1$ and a set of mappings $\lambda^n : R \rightarrow R$, $n = 0,1,2,\ldots$ such that

i) $\lambda^0(x) = 1$ for all $x \in R$;

ii) $\lambda^1(x) = x$ for all $x \in R$;

iii) $\lambda^n(x+y) = \sum_{i+j=n} \lambda^i(x) \lambda^j(y)$.

Examples are, for instance, the topological $K$-groups $K(M)$ and $K_G(M)$, $G$ a compact Lie group (cf. $K$-theory), and the complex representation ring $R(G)$ of a finite group $G$ (cf. Representation of a compact group). In all these cases the $\lambda^n$ are induced by taking exterior powers. For instance, for $M = \text{pt}$, $K(M) = \mathbf{Z}$ and the $\lambda$-structure is given by $\lambda^n(m) = \binom{m}{n}$ (binomial coefficients; the formula $\binom{m_1+m_2}{n} = \sum_{i+j=n} \binom{m_1}{i} \binom{m_2}{j}$ follows by the binomial expansion theorem from $(X+Y)^{m_1+m_2} = (X+Y)^{m_1} (X+Y)^{m_2}$.

Let $R$ be any commutative ring with unit element 1. Consider the set $\Lambda(R) = 1 + t R[[t]]$ of power series in $t$ over $R$ with constant term 1. Multiplication of power series turns $\Lambda(R)$ into an Abelian group. A pre-$\lambda$-ring structure on $\Lambda(R)$ defines a homomorphism of Abelian groups $\lambda_t : R \rightarrow \Lambda(R)$, $\lambda_t(x) = \lambda^0(x) + \lambda^1(x) t + \lambda^2(x) t^2 + \cdots$, and vice versa.

Let $\alpha(t) = 1 + a_1 t + a_2 t^2 + \cdots$, $\beta(t) = 1 + b_1 t + b_2 t^2 + \cdots$ be two elements of $\Lambda(R)$. Formally, write $$ \alpha(t) = \prod_{i=1}^\infty \left({ 1 - \xi_i t }\right) $$ $$ \beta(t) = \prod_{i=1}^\infty \left({ 1 - \eta_i t }\right) $$ and consider the expressions $$ \prod_{i,j=1}^\infty \left({ 1 - \xi_i \eta_j t }\right) = 1 + P_1 t + P_2 t^2 + \cdots \ , $$ $$ \prod_{i_1 < i_2 < \cdots < i_n}^\infty \left({ 1 - \xi_{i_1} \xi_{i_2} \cdots \xi_{i_n} t }\right) = 1 + L_{1,n} t + L_{2,n} t^2 + \cdots \ . $$

The $P_i$ and $L_{i,n}$ are symmetric polynomial expressions in the $\xi$'s and $\eta$'s and hence can be written as universal polynomial expressions in the $a$'s and $b$'s. Now define a multiplication on $\Lambda(R)$ by $$ \alpha(t) * \beta(t) = 1 + P_1(a,b) t + P_2(a,b) t^2 + \cdots $$ ($a = (a_1,a_2,\ldots)$, $b = (b_1,b_2,\ldots)$), and define operations (mappings) $\lambda^n : \Lambda(R) \rightarrow \Lambda(R)$ by $$ \lambda^n \alpha(t) = 1 + L_{1,n}(a,b) t + L_{2,n}(a,b) t^2 + \cdots \ . $$

The ring $\Lambda(R)$ with these operations is a pre-$\lambda$-ring. Given two pre-$\lambda$-rings $R_1$, $R_2$, a $\lambda$-ring homomorphism $\phi : R_1 \rightarrow R_2$ is a homomorphism of rings such that $\phi(\lambda^n(x)) = \lambda^n(\phi(x))$ for all $x \in R_1$, $n = 0,1,2,\ldots$.

A pre-$\lambda$-ring $R$ is a $\lambda$-ring if $\lambda_{-t} : R \rightarrow \Lambda(R)$, $\lambda_{-t}(x) = 1 - \lambda^1(x) t + \lambda^2(x) t^2 - \cdots$, is a homomorphism of pre-$\lambda$-rings. The ring $\Lambda(R)$ is always a $\lambda$-ring and so are the standard examples $K(M)$, $K_G(M)$, $R(G)$ of pre-$\lambda$-rings mentioned above.

On the other hand, consider a finite group $G$. A finite $G$-set is a finite set together with a group action of $G$. Using disjoint union and Cartesian products with diagonal action, the isomorphism classes of finite $G$-sets form a semi-ring, $A^+(G)$. The associated Grothendieck ring $A(G)$ is called the Burnside ring. On $A^+(G)$, define operations $\lambda^n : A^+(G) \rightarrow A^+(G)$ by taking $\lambda^n(S)$ to be the set of$n$-element subsets of $S$ with the natural induced $G$-action. This generalizes the $\lambda$-operations $\lambda^n$ on $\mathbf{N} \subset \mathbf{Z}$, $\lambda^n(m) = \binom{m}{n}$. Using iii), the $\lambda^n$ extend to $A(G)$, making the Burnside ring into a pre-$\lambda$-ring. As a rule this pre-$\lambda$-ring is not a $\lambda$-ring, [a9].

Instead of pre-$\lambda$-ring and $\lambda$-ring one also finds, respectively, the phrases $\lambda$-ring and special $\lambda$-ring in the literature.

Let $R$ be a pre-$\lambda$-ring. One defines new operations $\psi^i : R \rightarrow R$ by the formula $$ -t \frac{d}{dt} \log \lambda_{-t} (x) = \sum_{i=1}^\infty \psi^i(x) t^i \ . $$

These operations are called the Adams operations on the pre-$\lambda$-ring $R$. They were introduced in the case $R = K(M)$ by J.F. Adams ([a10]).

The Adams operations satisfy

iv) $\Psi^1(x) = x$;

v) $\Psi^n(x+y) = \Psi^n(x) + \Psi^n(y)$.

Let $R$ be a torsion-free pre-$\lambda$-ring; then $R$ is a $\lambda$-ring if and only if the Adams operations satisfy in addition

vi) $\Psi^i(1) = 1$;

vii) $\Psi^n(xy) = \Psi^n(x) \Psi^n(y)$;

viii) $\Psi^{ij}(x) = \Psi^i(\Psi^j(x))$.

A ring $R$ with operations $\Psi^i$ satisfying iv)–viii) is sometimes called a $\Psi$-ring.

The ring $\Lambda(R)$ is isomorphic to the ring $W(R)$ of (big) Witt vectors (cf. (the editorial comments to) Witt vector): $$ \bar E : W(R) \rightarrow \Lambda(R) $$ $$ (a_1,a_2,\ldots) \mapsto \prod_{i=1}^\infty \left({ 1 - a_i t^i }\right) $$

Under this isomorphism the Adams operations $\Psi^n$ on $\Lambda(R)$ correspond to the Frobenius operations $\mathbf{f}_n : W(R) \rightarrow W(R)$.

The $\lambda$-structures on the rings $\Lambda(R)$ define a functorial morphism of ring-valued functors $\lambda_{-t}(\cdot) : \Lambda(\cdot) \rightarrow \Lambda(\Lambda(\cdot)) $. Together with $\Lambda(R) \rightarrow R$, $1 + a_1 t + a_2 t^2 + \cdots \mapsto a_1$, this defines a co-triple structure on the functor $\Lambda$, and the $\lambda$-rings are precisely the co-algebras of this co-triple.

Via the isomorphism $\bar E$ one finds "exponential homomorphisms" $$ E : W(R) \rightarrow W(W(R)) $$ $$ E' : W(R) \rightarrow \Lambda(W(R)) $$ which should be seen as (generalizing) the so-called Artin–Hasse exponential ([a11], [a12]).

Let $w_n(R) : W(R) \rightarrow R$ be the ring homomorphism $$ w_n (a_1,a_2,\ldots) = \sum_{d|n} d a_d^{n/d} \ . $$ Then the Artin–Hasse exponential $E(R) : W(R) \rightarrow W(W(R))$ is functorially characterized by $$ w_n(W(R)) \circ E(R) = \mathbf{f}_n(R) $$ where $\mathbf{f}_n$ is the Frobenius homomorphism.

Let $V : \lambda\textsf{-Ring} \rightarrow \textsf{Ring}$ be the forgetful functor. Then the functor $\Lambda : \textsf{Ring} \rightarrow \lambda\textsf{-Ring}$ is right adjoint (cf. Adjoint functor) to $V$: $$ \textsf{Ring}(V(S),R) \equiv \lambda\textsf{-Ring}(S,\Lambda(R)) $$ (cf. [a5], p. 20).

There are (besides the identity) three natural automorphisms of the Abelian group $\Lambda(R) = 1 + t R[[t]]$, given by the substitution $t \mapsto -t$, the "inversion" $\alpha(t) \mapsto \alpha(t)^{-1}$, and the combination of the two. Correspondingly there are four natural ways to introduce a ring structure on $\Lambda(R)$; the corresponding unit elements are $1-t$, $1+t$, $(1-t)^{-1}$, $(1+t)^{-1}$. All four occur in the literature. The most frequently occurring have $1-t$ or $1+t$ as their unit element — here, in the above, $1-t$ is the unit element —, and $(1+t)^{-1}$ seems to be the most rare case.

$\lambda$-rings were introduced by A. Grothendieck in an algebraic-geometric setting [a2] and were first used in group representation theory by M.F. Atiyah and D.O. Tall ([a1]).

In case $x \in R$ is one-dimensional, i.e. $\lambda^n(x) = 0$ for $n \ge 2$, the terminology derives from the case $R = K(M)$ or $R = R(G)$; one has $\Psi^n(x) = x^n$, whence the name power operations for the $\Psi^n$. On the $\Lambda(R)$ the operations $\Psi^n$ are directly defined by $$ \Psi^n \left({ \prod_{i=1}^\infty (1 - \xi_i t) }\right) = \prod_{i=1}^\infty (1 - \xi_i^n t) \ . $$

References

[a1] M.F. Atiyah, D.O. Tall, "Group representations, $\lambda$-rings and the $J$-homomorphism" Topology , 8 (1969) pp. 253–297 MR244387
[a2] A. Grothendieck, "La théorie des classes de Chern" Bull. Soc. Math. France , 86 (1958) pp. 137–154 MR0116023 Zbl 0091.33201
[a3] A. Grothendieck, "Classes de faisceaux et théorème de Riemann–Roch" , Sem. Géom. Algébrique , 6 , Springer (1972) pp. 20–77 Zbl 0229.14008
[a4] M. Hazewinkel, "Formal groups and applications" , Acad. Press (1978) pp. 144ff MR0506881 MR0463184 Zbl 0454.14020
[a5] D. Knutson, "$\lambda$-rings and the representation theory of the symmetric group" , Springer (1974) MR0364425 Zbl 0272.20008
[a6] P. Berthelot, "Généralités sur les $\lambda$-anneaux" , Sem. Géom. Algébrique , 6 , Springer (1972) pp. 297–365
[a7] W. Fulton, S. Lang, "Riemann–Roch algebra" , Springer (1985) MR0801033 Zbl 0579.14011
[a8] T. tom Dieck, "Transformation groups and representation theory" , Springer (1979) Zbl 0445.57023
[a9] C. Siebeneicher, "$\lambda$-Ringstrukturen auf dem Burnsidering der Permutationsdarstellungen einer endlichen Gruppe" Math. Z. , 146 (1976) pp. 223–238 MR0390035 Zbl 0306.20011
[a10] J.F. Adams, "Vectorfields on spheres" Ann. of Math. , 75 (1962) pp. 603–632 DOI 10.2307/1970213 Zbl 0112.38102
[a11] M. Hazewinkel, "Twisted Lubin–Tate formal group laws, ramified Witt vectors and (ramified) Artin–Hasse exponentials" Trans. Amer. Math. Soc. , 259 (1980) pp. 47–63 MR0561822 Zbl 0437.13014
[a12] E. Artin, H. Hasse, "Die beide Ergänzungssätze zum Reciprozitätsgesetz der $\ell^n$-ten Potenzreste im Körper der $\ell^n$-ten Einheitswurzeln" Abh. Math. Sem. Univ. Hamburg , 6 (1928) pp. 146–162
[a13] G. Whaples, "Generalized local class field theory III: Second form of the existence theorem, structure of analytic groups" Duke Math. J. , 21 (1954) pp. 575–581 MR73645
How to Cite This Entry:
Lambda-ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lambda-ring&oldid=37936