Namespaces
Variants
Actions

Difference between revisions of "Knaster continuum"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(LaTeX)
 
Line 1: Line 1:
 +
{{TEX|done}}{{MSC|54F15}}
 +
 
''hereditarily indecomposable continuum''
 
''hereditarily indecomposable continuum''
  
A continuum each subcontinuum of which is indecomposable. A space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055530/k0555301.png" /> is called indecomposable if it is connected and cannot be represented as the union of two closed connected proper subsets of it.
+
A [[continuum]] each subcontinuum of which is [[Indecomposable continuum|indecomposable]]. A space $X$ is called indecomposable if it is connected and cannot be represented as the union of two closed connected proper subsets of it.
  
The first proof of the existence of such a continuum was given by B. Knaster [[#References|[1]]]. In the space of all subcontinua of the ordinary square <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055530/k0555302.png" />, the set of all Knaster continua is an everywhere-dense <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055530/k0555303.png" />-set [[#References|[2]]].
+
The first proof of the existence of such a continuum was given by B. Knaster [[#References|[1]]]. In the space of all subcontinua of the ordinary square $I^2$, the set of all Knaster continua is an [[Everywhere-dense set|everywhere-dense]] [[G-delta|$G_\delta$]]-set [[#References|[2]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B. Knaster,  "Un continu dont tout sous-continu est indécomposable"  ''Fund. Math.'' , '''3'''  (1922)  pp. 247–286</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Mazurkiewicz,  "Sur les continus absolument indécomposables"  ''Fund. Math.'' , '''16'''  (1930)  pp. 151–159</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  B. Knaster,  "Un continu dont tout sous-continu est indécomposable"  ''Fund. Math.'' , '''3'''  (1922)  pp. 247–286 {{ZBL|48.0212.01}}</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  S. Mazurkiewicz,  "Sur les continus absolument indécomposables"  ''Fund. Math.'' , '''16'''  (1930)  pp. 151–159 {{ZBL|56.1135.02}}</TD></TR>
 +
</table>
  
  
  
 
====Comments====
 
====Comments====
See also [[Pseudo-arc|Pseudo-arc]] and [[Hereditarily indecomposable continuum|Hereditarily indecomposable continuum]].
+
See also [[Pseudo-arc]] and [[Hereditarily indecomposable continuum]].

Latest revision as of 16:42, 10 January 2015

2020 Mathematics Subject Classification: Primary: 54F15 [MSN][ZBL]

hereditarily indecomposable continuum

A continuum each subcontinuum of which is indecomposable. A space $X$ is called indecomposable if it is connected and cannot be represented as the union of two closed connected proper subsets of it.

The first proof of the existence of such a continuum was given by B. Knaster [1]. In the space of all subcontinua of the ordinary square $I^2$, the set of all Knaster continua is an everywhere-dense $G_\delta$-set [2].

References

[1] B. Knaster, "Un continu dont tout sous-continu est indécomposable" Fund. Math. , 3 (1922) pp. 247–286 Zbl 48.0212.01
[2] S. Mazurkiewicz, "Sur les continus absolument indécomposables" Fund. Math. , 16 (1930) pp. 151–159 Zbl 56.1135.02


Comments

See also Pseudo-arc and Hereditarily indecomposable continuum.

How to Cite This Entry:
Knaster continuum. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Knaster_continuum&oldid=36191
This article was adapted from an original article by L.G. Zambakhidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article