Namespaces
Variants
Actions

Difference between revisions of "Inversion of a series"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(latex details)
Line 15: Line 15:
 
$$ \tag{1 }
 
$$ \tag{1 }
 
w  =  f ( z)  = \  
 
w  =  f ( z)  = \  
\sum _ { j= } 0 ^  \infty   
+
\sum_{j=0} ^  \infty   
 
b _ {j} ( z- a )  ^ {j} ,\ \  
 
b _ {j} ( z- a )  ^ {j} ,\ \  
 
b _ {1} \neq 0 ,
 
b _ {1} \neq 0 ,
Line 25: Line 25:
 
$$ \tag{2 }
 
$$ \tag{2 }
 
z  =  \phi ( w)  = \  
 
z  =  \phi ( w)  = \  
\sum _ { k= } 0 ^  \infty   
+
\sum_{k=0} ^  \infty   
 
a _ {k} ( w - b )  ^ {k} ,
 
a _ {k} ( w - b )  ^ {k} ,
 
$$
 
$$
Line 62: Line 62:
 
$$ \tag{3 }
 
$$ \tag{3 }
 
w  =  f ( z)  = \  
 
w  =  f ( z)  = \  
b + \sum _ { j= } m ^  \infty   
+
b + \sum_{j=m} ^  \infty   
 
b _ {j} ( z- a )  ^ {j} ,\ \  
 
b _ {j} ( z- a )  ^ {j} ,\ \  
 
m \geq  2 ,\ \  
 
m \geq  2 ,\ \  
Line 69: Line 69:
  
 
that is, if  $  a $
 
that is, if  $  a $
is a [[Critical point|critical point]] for  $  f ( z) $,  
+
is a [[critical point]] for  $  f ( z) $,  
 
then the inverse function  $  z = \phi ( w) $
 
then the inverse function  $  z = \phi ( w) $
 
has an [[Algebraic branch point|algebraic branch point]] of order  $  m- 1 $
 
has an [[Algebraic branch point|algebraic branch point]] of order  $  m- 1 $
Line 77: Line 77:
 
$$  
 
$$  
 
z  =  \phi ( w)  = \  
 
z  =  \phi ( w)  = \  
a + \sum _ { k= } 1 ^  \infty   
+
a + \sum_{k=1} ^  \infty   
 
a _ {k} ( w- b ) ^ {k / m } ,
 
a _ {k} ( w- b ) ^ {k / m } ,
 
$$
 
$$
Line 108: Line 108:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.I. Markushevich,  "Theory of functions of a complex variable" , '''1''' , Chelsea  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Hurwitz,  R. Courant,  "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , Springer  (1964)  pp. Chapt. 3, Abschnitt 2</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  E.E. Soltan,  "The expansion of holomorphic functions in multi-dimensional Bürmann–Lagrange series" , ''Holomorphic functions of several complex variables'' , Krasnoyarsk  (1972)  pp. 129–137; 212  (In Russian)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  A.I. Markushevich,  "Theory of functions of a complex variable" , '''1''' , Chelsea  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Hurwitz,  R. Courant,  "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , Springer  (1964)  pp. Chapt. 3, Abschnitt 2</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  E.E. Soltan,  "The expansion of holomorphic functions in multi-dimensional Bürmann–Lagrange series" , ''Holomorphic functions of several complex variables'' , Krasnoyarsk  (1972)  pp. 129–137; 212  (In Russian)</TD></TR>
 +
</table>

Revision as of 12:55, 6 January 2024


To obtain, for a given power series

$$ \tag{1 } w = f ( z) = \ \sum_{j=0} ^ \infty b _ {j} ( z- a ) ^ {j} ,\ \ b _ {1} \neq 0 , $$

a series for the inverse function $ z = \phi ( w) $ in the form

$$ \tag{2 } z = \phi ( w) = \ \sum_{k=0} ^ \infty a _ {k} ( w - b ) ^ {k} , $$

where $ b = f ( a) = b _ {0} $, $ a _ {0} = a $,

$$ a _ {k} = \ \frac{1}{k!} \ \lim\limits _ {\zeta \rightarrow a } \ \frac{d ^ {k-} 1 }{d \zeta ^ {k-} 1 } \left [ \frac{\zeta - a }{f ( \zeta ) - b } \right ] ^ {k} ,\ \ k \geq 1 . $$

The series (2) is called the inverse of the series (1), or the Lagrange series. The more general problem of finding the expansion of an arbitrary composite analytic function $ F [ \phi ( w) ] $ is solved by the Bürmann–Lagrange series. If the disc of convergence of (1) is $ | z- a | < \rho $, then the series (2) converges in the disc $ | w- b | < \delta $, where $ \delta $ is the distance of the point $ b $ from the image of the circle $ | z- a | = \rho $ under the mapping $ w = f ( z) $.

If the function $ w = f ( z) $ is expanded as a series of the form

$$ \tag{3 } w = f ( z) = \ b + \sum_{j=m} ^ \infty b _ {j} ( z- a ) ^ {j} ,\ \ m \geq 2 ,\ \ b _ {m} \neq 0 , $$

that is, if $ a $ is a critical point for $ f ( z) $, then the inverse function $ z = \phi ( w) $ has an algebraic branch point of order $ m- 1 $ at $ b $, and inversion of (3) is only possible in the form of a Puiseux series:

$$ z = \phi ( w) = \ a + \sum_{k=1} ^ \infty a _ {k} ( w- b ) ^ {k / m } , $$

$$ a _ {k} = \frac{1}{k ! } \lim\limits _ {\zeta \rightarrow a } \frac{d ^ {k-} 1 }{d \zeta ^ {k-} 1 } \left \{ \frac{\zeta - a }{[ f ( \zeta ) - b ] ^ {1 / m } } \right \} ^ {k} ,\ k \geq 1 . $$

The problem of inversion of a Laurent series in negative and positive integer powers of $ z- a $ is solved similarly in the case when the series has only finitely many negative (or positive) powers (see [1]).

For analytic functions of several complex variables $ z = ( z _ {1} \dots z _ {n} ) $, $ n > 1 $, problems of inversion can be put in various ways. For example, if $ f : \mathbf C ^ {n} \rightarrow \mathbf C ^ {n} $ is a non-singular (that is, the rank of the Jacobi matrix $ \| \partial f / \partial z _ {k} \| $ is equal to $ n $) holomorphic mapping of a neighbourhood of zero in $ \mathbf C ^ {n} $ into $ \mathbf C ^ {n} $, $ f ( 0) = 0 $, then in some neighbourhood of zero there exists an inverse holomorphic function $ \phi $, which can be described in the form of a multi-dimensional Bürmann–Lagrange series (see [3]).

References

[1] A.I. Markushevich, "Theory of functions of a complex variable" , 1 , Chelsea (1977) (Translated from Russian)
[2] A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , Springer (1964) pp. Chapt. 3, Abschnitt 2
[3] E.E. Soltan, "The expansion of holomorphic functions in multi-dimensional Bürmann–Lagrange series" , Holomorphic functions of several complex variables , Krasnoyarsk (1972) pp. 129–137; 212 (In Russian)
How to Cite This Entry:
Inversion of a series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Inversion_of_a_series&oldid=47425
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article