Namespaces
Variants
Actions

Difference between revisions of "Galois ring"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The Galois ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g1100401.png" /> is [[#References|[a5]]] the unique [[Galois extension|Galois extension]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g1100402.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g1100403.png" />. For instance <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g1100404.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g1100405.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g1100406.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g1100407.png" />. Generalizing finite fields (cf. [[Finite field|Finite field]]), these rings find applications in similar areas: linear recurrences [[#References|[a1]]], [[#References|[a6]]], [[#References|[a7]]], cyclic codes [[#References|[a9]]], [[#References|[a2]]] [[#References|[a3]]], association schemes [[#References|[a10]]], and character sums [[#References|[a10]]], [[#References|[a4]]]. For a connection with Witt rings see [[#References|[a8]]] (cf. also [[Witt ring|Witt ring]]). Two different constructions of these rings are given below: bottom-up, starting from a finite field, and top-down, starting from a [[Local field|local field]].
+
<!--
 +
g1100401.png
 +
$#A+1 = 64 n = 6
 +
$#C+1 = 64 : ~/encyclopedia/old_files/data/G110/G.1100040 Galois ring
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
The Galois ring  $  { \mathop{\rm GR} } ( p  ^ {m} ,d ) $
 +
is [[#References|[a5]]] the unique [[Galois extension|Galois extension]] of $  \mathbf Z/ {p  ^ {m} } \mathbf Z $
 +
of degree $  d $.  
 +
For instance $  { \mathop{\rm GR} } ( p  ^ {m} ,1 ) $
 +
is $  \mathbf Z/p  ^ {m} \mathbf Z $
 +
and $  { \mathop{\rm GR} } ( p,d ) $
 +
is $  \mathbf F _ {p  ^ {d}  } $.  
 +
Generalizing finite fields (cf. [[Finite field|Finite field]]), these rings find applications in similar areas: linear recurrences [[#References|[a1]]], [[#References|[a6]]], [[#References|[a7]]], cyclic codes [[#References|[a9]]], [[#References|[a2]]] [[#References|[a3]]], association schemes [[#References|[a10]]], and character sums [[#References|[a10]]], [[#References|[a4]]]. For a connection with Witt rings see [[#References|[a8]]] (cf. also [[Witt ring|Witt ring]]). Two different constructions of these rings are given below: bottom-up, starting from a finite field, and top-down, starting from a [[Local field|local field]].
  
 
==Bottom up.==
 
==Bottom up.==
This is the first and the most algorithmic one. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g1100408.png" />. Pick an irreducible monic primitive [[Polynomial|polynomial]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g1100409.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004010.png" />, as in the standard construction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004011.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004012.png" />, and lift it to a polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004013.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004014.png" /> in such a way that the nice finite field property (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004015.png" /> divides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004016.png" />) still holds. In the language of linear recurrences (or linear feedback shift registers), one has lifted an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004017.png" />-sequence of period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004018.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004019.png" /> into a linear recurrence over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004020.png" /> of the same period. This is construction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004022.png" /> of [[#References|[a1]]]. Note that an arbitrary lift will lead to multiplying the period by a power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004023.png" />, as in construction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004025.png" /> of [[#References|[a1]]]. For example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004027.png" /> gives a period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004028.png" /> and not <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004029.png" />. Now, let
+
This is the first and the most algorithmic one. Let $  n = p  ^ {d} - 1 $.  
 +
Pick an irreducible monic primitive [[Polynomial|polynomial]] $  {\overline{f}\; } $
 +
of degree $  d $,  
 +
as in the standard construction of $  \mathbf F _ {p  ^ {d}  } $
 +
from $  \mathbf F _ {p} $,  
 +
and lift it to a polynomial $  f $
 +
over $  \mathbf Z/p  ^ {m} \mathbf Z $
 +
in such a way that the nice finite field property ( $  f $
 +
divides $  X  ^ {n} - 1 $)  
 +
still holds. In the language of linear recurrences (or linear feedback shift registers), one has lifted an $  m $-
 +
sequence of period $  n $
 +
over $  \mathbf F _ {p} $
 +
into a linear recurrence over $  \mathbf Z/p  ^ {m} \mathbf Z $
 +
of the same period. This is construction $  A $
 +
of [[#References|[a1]]]. Note that an arbitrary lift will lead to multiplying the period by a power of $  p $,  
 +
as in construction $  B $
 +
of [[#References|[a1]]]. For example, $  p = 2 $,  
 +
$  f ( x ) = x  ^ {2} + x + 1 $
 +
gives a period $  6 $
 +
and not $  3 $.  
 +
Now, let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004030.png" /></td> </tr></table>
+
$$
 +
{ \mathop{\rm GR} } ( p  ^ {m} ,d ) = \mathbf Z/p  ^ {m} \mathbf Z [ X ] / ( f ) .
 +
$$
  
 
==Top down.==
 
==Top down.==
This <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004031.png" />-adic approach was introduced in print in [[#References|[a4]]] but was implicitly known to M. Yamada [[#References|[a10]]], who used the term  "Teichmüller" , as in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004032.png" />-adic analysis, and also to E. Spiegel [[#References|[a9]]]. Denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004033.png" /> the ring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004034.png" />-adic integers, best viewed as the set of formal expansions in powers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004035.png" /> with coefficients in the residue field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004036.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004037.png" />. For higher values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004038.png" /> one considers the unramified extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004039.png" /> generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004040.png" /> (an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004041.png" />-th root of unity) and its ring of integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004042.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004043.png" /> denote the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004044.png" /> roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004045.png" /> over this latter ring. This set of so-called Teichmüller representatives reduces modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004046.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004047.png" />. The ring of integers of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004048.png" />-adic field admits the following expansion: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004049.png" />, which converges in the sense of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004050.png" />-adic valuation. Modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004051.png" /> this yields
+
This $  p $-
 +
adic approach was introduced in print in [[#References|[a4]]] but was implicitly known to M. Yamada [[#References|[a10]]], who used the term  "Teichmüller" , as in $  p $-
 +
adic analysis, and also to E. Spiegel [[#References|[a9]]]. Denote by $  \mathbf Z _ {p} $
 +
the ring of $  p $-
 +
adic integers, best viewed as the set of formal expansions in powers of $  p $
 +
with coefficients in the residue field $  \mathbf F _ {p} $.  
 +
Then $  { \mathop{\rm GR} } ( p  ^ {m} ,1 ) = \mathbf Z _ {p} / ( p  ^ {m} ) $.  
 +
For higher values of $  d $
 +
one considers the unramified extension of $  \mathbf Q _ {p} $
 +
generated by $  \zeta _ {n} $(
 +
an $  n $-
 +
th root of unity) and its ring of integers $  \mathbf Z _ {p} [ \zeta _ {n} ] $.  
 +
Let $  T _ {d} $
 +
denote the set of $  p  ^ {d} $
 +
roots of $  1 $
 +
over this latter ring. This set of so-called Teichmüller representatives reduces modulo $  p $
 +
to $  \mathbf F _ {p  ^ {d}  } $.  
 +
The ring of integers of the $  p $-
 +
adic field admits the following expansion: $  \mathbf Z _ {p} [ \zeta _ {n} ] = \sum _ {i = 0 }  ^  \infty  p  ^ {i} T  ^ {i} $,  
 +
which converges in the sense of the $  p $-
 +
adic valuation. Modulo $  p  ^ {m} $
 +
this yields
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004052.png" /></td> </tr></table>
+
$$
 +
{ \mathop{\rm GR} } ( p  ^ {m} ,d ) = \mathbf Z _ {p} [ \zeta _ {n} ] / ( p  ^ {m} ) .
 +
$$
  
 
==Multiplicative structure.==
 
==Multiplicative structure.==
The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004053.png" /> comprises units <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004054.png" /> and zero divisors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004055.png" />. The multiplicative group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004056.png" /> is the direct product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004057.png" /> by the group of so-called principal units <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004058.png" />. The group of principal units is isomorphic, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004059.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004060.png" />, to the additive group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004061.png" />. The Galois group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004062.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004063.png" /> is isomorphic to the Galois group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004064.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004065.png" /> and therefore cyclic of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004066.png" />.
+
The ring $  R = { \mathop{\rm GR} } ( p  ^ {m} ,d ) $
 +
comprises units $  R  ^  \times  $
 +
and zero divisors $  pR $.  
 +
The multiplicative group $  R  ^  \times  $
 +
is the direct product of $  T _ {d} \setminus  \{ 0 \} $
 +
by the group of so-called principal units $  1 + pR $.  
 +
The group of principal units is isomorphic, for $  m = 2 $
 +
or $  p > 2 $,  
 +
to the additive group of $  ( \mathbf Z/p ^ {m - 1 } \mathbf Z )  ^ {d} $.  
 +
The Galois group of $  R $
 +
over $  \mathbf Z/p  ^ {m} \mathbf Z $
 +
is isomorphic to the Galois group of $  \mathbf F _ {p  ^ {d}  } $
 +
over $  \mathbf F _ {p} $
 +
and therefore cyclic of order $  d $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Boztas,  A.R. Hammons,  P.V. Kumar,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004067.png" />-phase sequence with near optimum correlation properties"  ''IEEE Inform. Th.'' , '''38'''  (1992)  pp. 1101–1113</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Bonnecaze,  P. Solé,  A.R. Calderbank,  "Quaternary construction of unimodular lattices"  ''IEEE Inform. Th.'' , '''41'''  (1995)  pp. 366–376</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  A.R. Hammons,  P.V. Kumar,  A.R. Calderbank,  N.J.A. Sloane,  P. Solé,  "The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004068.png" />-linearity of Kerdock, Preparata, Goethals, and related codes"  ''IEEE Trans. Information Th.'' , '''40'''  (1994)  pp. 301–319</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  V. Kumar,  T. Helleseth,  R.A. Calderbank,  "An upper bound for Weil-type exponential sums over Galois rings and applications"  ''IEEE Inform. Th.'' , '''41'''  (1995)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  B.R. MacDonald,  "Finite rings with identity" , M. Dekker  (1974)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  P. Solé,  "A quaternary cyclic code and a family of quaternary sequences with low correlation"  G. Cohen (ed.)  J. Wolfmann (ed.) , ''Coding Theory and Applications'' , ''Lecture Notes in Computer Science'' , '''388''' , Springer  (1989)  pp. 193–201</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  P. Udaya,  M.U. Siddiqui,  "Optimal biphase sequences with large linear complexity derived from sequences over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004069.png" />"  ''IEEE Inform. Th.'' , '''IT–42'''  (1996)  pp. 202–216</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  A.G. Shanbag,  P.V. Kumar,  T. Helleseth,  "An upperbound for the extended Kloosterman sums over Galois rings" , ''Finite Fields and Applications''  (to appear)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  E. Spiegel,  "Codes over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004070.png" /> revisited"  ''Inform. and Control'' , '''37'''  (1978)  pp. 100–104</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  M. Yamada,  "Distance regular graphs of girth <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004071.png" /> over an extension ring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004072.png" />"  ''Graphs and Combinatorics'' , '''6'''  (1980)  pp. 381–384</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Boztas,  A.R. Hammons,  P.V. Kumar,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004067.png" />-phase sequence with near optimum correlation properties"  ''IEEE Inform. Th.'' , '''38'''  (1992)  pp. 1101–1113</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Bonnecaze,  P. Solé,  A.R. Calderbank,  "Quaternary construction of unimodular lattices"  ''IEEE Inform. Th.'' , '''41'''  (1995)  pp. 366–376</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  A.R. Hammons,  P.V. Kumar,  A.R. Calderbank,  N.J.A. Sloane,  P. Solé,  "The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004068.png" />-linearity of Kerdock, Preparata, Goethals, and related codes"  ''IEEE Trans. Information Th.'' , '''40'''  (1994)  pp. 301–319</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  V. Kumar,  T. Helleseth,  R.A. Calderbank,  "An upper bound for Weil-type exponential sums over Galois rings and applications"  ''IEEE Inform. Th.'' , '''41'''  (1995)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  B.R. MacDonald,  "Finite rings with identity" , M. Dekker  (1974)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  P. Solé,  "A quaternary cyclic code and a family of quaternary sequences with low correlation"  G. Cohen (ed.)  J. Wolfmann (ed.) , ''Coding Theory and Applications'' , ''Lecture Notes in Computer Science'' , '''388''' , Springer  (1989)  pp. 193–201</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  P. Udaya,  M.U. Siddiqui,  "Optimal biphase sequences with large linear complexity derived from sequences over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004069.png" />"  ''IEEE Inform. Th.'' , '''IT–42'''  (1996)  pp. 202–216</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  A.G. Shanbag,  P.V. Kumar,  T. Helleseth,  "An upperbound for the extended Kloosterman sums over Galois rings" , ''Finite Fields and Applications''  (to appear)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  E. Spiegel,  "Codes over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004070.png" /> revisited"  ''Inform. and Control'' , '''37'''  (1978)  pp. 100–104</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  M. Yamada,  "Distance regular graphs of girth <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004071.png" /> over an extension ring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110040/g11004072.png" />"  ''Graphs and Combinatorics'' , '''6'''  (1980)  pp. 381–384</TD></TR></table>

Latest revision as of 19:40, 5 June 2020


The Galois ring $ { \mathop{\rm GR} } ( p ^ {m} ,d ) $ is [a5] the unique Galois extension of $ \mathbf Z/ {p ^ {m} } \mathbf Z $ of degree $ d $. For instance $ { \mathop{\rm GR} } ( p ^ {m} ,1 ) $ is $ \mathbf Z/p ^ {m} \mathbf Z $ and $ { \mathop{\rm GR} } ( p,d ) $ is $ \mathbf F _ {p ^ {d} } $. Generalizing finite fields (cf. Finite field), these rings find applications in similar areas: linear recurrences [a1], [a6], [a7], cyclic codes [a9], [a2] [a3], association schemes [a10], and character sums [a10], [a4]. For a connection with Witt rings see [a8] (cf. also Witt ring). Two different constructions of these rings are given below: bottom-up, starting from a finite field, and top-down, starting from a local field.

Bottom up.

This is the first and the most algorithmic one. Let $ n = p ^ {d} - 1 $. Pick an irreducible monic primitive polynomial $ {\overline{f}\; } $ of degree $ d $, as in the standard construction of $ \mathbf F _ {p ^ {d} } $ from $ \mathbf F _ {p} $, and lift it to a polynomial $ f $ over $ \mathbf Z/p ^ {m} \mathbf Z $ in such a way that the nice finite field property ( $ f $ divides $ X ^ {n} - 1 $) still holds. In the language of linear recurrences (or linear feedback shift registers), one has lifted an $ m $- sequence of period $ n $ over $ \mathbf F _ {p} $ into a linear recurrence over $ \mathbf Z/p ^ {m} \mathbf Z $ of the same period. This is construction $ A $ of [a1]. Note that an arbitrary lift will lead to multiplying the period by a power of $ p $, as in construction $ B $ of [a1]. For example, $ p = 2 $, $ f ( x ) = x ^ {2} + x + 1 $ gives a period $ 6 $ and not $ 3 $. Now, let

$$ { \mathop{\rm GR} } ( p ^ {m} ,d ) = \mathbf Z/p ^ {m} \mathbf Z [ X ] / ( f ) . $$

Top down.

This $ p $- adic approach was introduced in print in [a4] but was implicitly known to M. Yamada [a10], who used the term "Teichmüller" , as in $ p $- adic analysis, and also to E. Spiegel [a9]. Denote by $ \mathbf Z _ {p} $ the ring of $ p $- adic integers, best viewed as the set of formal expansions in powers of $ p $ with coefficients in the residue field $ \mathbf F _ {p} $. Then $ { \mathop{\rm GR} } ( p ^ {m} ,1 ) = \mathbf Z _ {p} / ( p ^ {m} ) $. For higher values of $ d $ one considers the unramified extension of $ \mathbf Q _ {p} $ generated by $ \zeta _ {n} $( an $ n $- th root of unity) and its ring of integers $ \mathbf Z _ {p} [ \zeta _ {n} ] $. Let $ T _ {d} $ denote the set of $ p ^ {d} $ roots of $ 1 $ over this latter ring. This set of so-called Teichmüller representatives reduces modulo $ p $ to $ \mathbf F _ {p ^ {d} } $. The ring of integers of the $ p $- adic field admits the following expansion: $ \mathbf Z _ {p} [ \zeta _ {n} ] = \sum _ {i = 0 } ^ \infty p ^ {i} T ^ {i} $, which converges in the sense of the $ p $- adic valuation. Modulo $ p ^ {m} $ this yields

$$ { \mathop{\rm GR} } ( p ^ {m} ,d ) = \mathbf Z _ {p} [ \zeta _ {n} ] / ( p ^ {m} ) . $$

Multiplicative structure.

The ring $ R = { \mathop{\rm GR} } ( p ^ {m} ,d ) $ comprises units $ R ^ \times $ and zero divisors $ pR $. The multiplicative group $ R ^ \times $ is the direct product of $ T _ {d} \setminus \{ 0 \} $ by the group of so-called principal units $ 1 + pR $. The group of principal units is isomorphic, for $ m = 2 $ or $ p > 2 $, to the additive group of $ ( \mathbf Z/p ^ {m - 1 } \mathbf Z ) ^ {d} $. The Galois group of $ R $ over $ \mathbf Z/p ^ {m} \mathbf Z $ is isomorphic to the Galois group of $ \mathbf F _ {p ^ {d} } $ over $ \mathbf F _ {p} $ and therefore cyclic of order $ d $.

References

[a1] S. Boztas, A.R. Hammons, P.V. Kumar, "-phase sequence with near optimum correlation properties" IEEE Inform. Th. , 38 (1992) pp. 1101–1113
[a2] A. Bonnecaze, P. Solé, A.R. Calderbank, "Quaternary construction of unimodular lattices" IEEE Inform. Th. , 41 (1995) pp. 366–376
[a3] A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A. Sloane, P. Solé, "The -linearity of Kerdock, Preparata, Goethals, and related codes" IEEE Trans. Information Th. , 40 (1994) pp. 301–319
[a4] V. Kumar, T. Helleseth, R.A. Calderbank, "An upper bound for Weil-type exponential sums over Galois rings and applications" IEEE Inform. Th. , 41 (1995)
[a5] B.R. MacDonald, "Finite rings with identity" , M. Dekker (1974)
[a6] P. Solé, "A quaternary cyclic code and a family of quaternary sequences with low correlation" G. Cohen (ed.) J. Wolfmann (ed.) , Coding Theory and Applications , Lecture Notes in Computer Science , 388 , Springer (1989) pp. 193–201
[a7] P. Udaya, M.U. Siddiqui, "Optimal biphase sequences with large linear complexity derived from sequences over " IEEE Inform. Th. , IT–42 (1996) pp. 202–216
[a8] A.G. Shanbag, P.V. Kumar, T. Helleseth, "An upperbound for the extended Kloosterman sums over Galois rings" , Finite Fields and Applications (to appear)
[a9] E. Spiegel, "Codes over revisited" Inform. and Control , 37 (1978) pp. 100–104
[a10] M. Yamada, "Distance regular graphs of girth over an extension ring of " Graphs and Combinatorics , 6 (1980) pp. 381–384
How to Cite This Entry:
Galois ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Galois_ring&oldid=47033
This article was adapted from an original article by P. Solé (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article