Namespaces
Variants
Actions

Difference between revisions of "D'Alembert formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fix formula)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
A formula expressing the solution of the Cauchy problem for the wave equation with one spatial variable. Let the given functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300601.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300602.png" /> belong, respectively, to the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300603.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300604.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300605.png" /> be continuous together with the first derivative with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300606.png" /> in the half-plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300607.png" />. Then the classical solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300608.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d0300609.png" /> of the [[Cauchy problem|Cauchy problem]]
+
<!--
 +
d0300601.png
 +
$#A+1 = 24 n = 0
 +
$#C+1 = 24 : ~/encyclopedia/old_files/data/D030/D.0300060 d\AApAlembert formula
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006010.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006011.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
A formula expressing the solution of the Cauchy problem for the wave equation with one spatial variable. Let the given functions  $  \phi $,
 +
$  \psi $
 +
belong, respectively, to the spaces  $  C  ^ {2} ( - \infty , + \infty ) $
 +
and  $  C  ^ {1} ( - \infty , + \infty ) $,
 +
and let  $  f( t, x) $
 +
be continuous together with the first derivative with respect to  $  x $
 +
in the half-plane  $  \{ t \geq  0,  - \infty < x < + \infty \} $.
 +
Then the classical solution  $  u( t, x) $
 +
in  $  \{ t > 0,  - \infty < x < \infty \} $
 +
of the [[Cauchy problem|Cauchy problem]]
  
is expressed by d'Alembert's formula:
+
$$ \tag{1 }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006012.png" /></td> </tr></table>
+
\frac{\partial  ^ {2} u ( t, x) }{\partial  t  ^ {2} }
 +
- a  ^ {2}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006013.png" /></td> </tr></table>
+
\frac{\partial  ^ {2} u ( t, x) }{\partial  x  ^ {2} }
 +
  = f( t, x),
 +
$$
  
If the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006015.png" /> are given and satisfy the above smoothness conditions on the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006016.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006017.png" /> satisfies it in the triangle
+
$$ \tag{2 }
 +
\left . u( t, x) \right | _ {t= 0= \phi ( x), \left .  
 +
\frac{\partial
 +
u ( t, x) }{\partial  t }
 +
\right | _ {t=0 } = \psi ( x) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006018.png" /></td> </tr></table>
+
is expressed by d'Alembert's formula:
  
then d'Alembert's formula gives the unique solution of the problem (1), (2) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006019.png" />. The requirements on the given functions may be weakened if one is interested in solutions in a certain generalized sense. For instance, it follows from d'Alembert's formula that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006020.png" /> is integrable with respect to any triangle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006021.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006022.png" /> is locally integrable and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006023.png" /> is continuous, the weak solution of Cauchy's problem (1), (2) may be defined as a uniform limit (in any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006024.png" />) of classical solutions with smooth data and is also expressed by d'Alembert's formula.
+
$$
 +
u( t, x) =
 +
\frac{1}{2a}
 +
\int\limits _ { 0 } ^ { t }  \int\limits _ {x- a( t- \tau ) } ^ { {x+ }  a( t- \tau ) } f ( \tau , \xi )  d \xi  d \tau +
 +
$$
  
The formula was named after J. d'Alembert (1747).
+
$$
 +
+
  
====References====
+
\frac{1}{2a}
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.S. Vladimirov,  "Equations of mathematical physics" , MIR (1984(Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.N. Tikhonov,  A.A. Samarskii,  "Partial differential equations of mathematical physics" , '''1–2''' , Holden-Day  (1976) (Translated from Russian)</TD></TR></table>
+
  \int\limits _ { x- } at ^ { x+ } at \psi ( \xi ) \
 +
d \xi +
 +
\frac{1}{2}
 +
  [ \phi ( x+ at) + \phi ( x- at) ] .
 +
$$
  
 +
If the functions  $  \phi $
 +
and  $  \psi $
 +
are given and satisfy the above smoothness conditions on the interval  $  \{ | x - x _ {0} | < aT \} $,
 +
and if  $  f( t, x) $
 +
satisfies it in the triangle
  
 +
$$
 +
Q _ {x _ {0}  }  ^ {T}  =  \{ | x - x _ {0} | < a( T- t) ,\
 +
t\geq  0 \} ,
 +
$$
  
====Comments====
+
then d'Alembert's formula gives the unique solution of the problem (1), (2) in  $  Q _ {x _ {0}  }  ^ {T} $.
 +
The requirements on the given functions may be weakened if one is interested in solutions in a certain generalized sense. For instance, it follows from d'Alembert's formula that if  $  f $
 +
is integrable with respect to any triangle  $  Q _ {x _ {0}  }  ^ {T} $,
 +
if  $  \psi $
 +
is locally integrable and if  $  \phi $
 +
is continuous, the weak solution of Cauchy's problem (1), (2) may be defined as a uniform limit (in any  $  Q _ {x _ {0}  }  ^ {T} $)
 +
of classical solutions with smooth data and is also expressed by d'Alembert's formula.
  
 +
The formula was named after J. d'Alembert (1747).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Courant,  D. Hilbert,  "Methods of mathematical physics. Partial differential equations" , '''2''' , Interscience  (1965)  (Translated from German)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.S. Vladimirov,  "Equations of mathematical physics" , MIR  (1984)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.N. Tikhonov,  A.A. Samarskii,  "Partial differential equations of mathematical physics" , '''1–2''' , Holden-Day  (1976)  (Translated from Russian)</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Courant,  D. Hilbert,  "Methods of mathematical physics. Partial differential equations" , '''2''' , Interscience  (1965)  (Translated from German)</TD></TR></table>

Latest revision as of 13:28, 26 March 2023


A formula expressing the solution of the Cauchy problem for the wave equation with one spatial variable. Let the given functions $ \phi $, $ \psi $ belong, respectively, to the spaces $ C ^ {2} ( - \infty , + \infty ) $ and $ C ^ {1} ( - \infty , + \infty ) $, and let $ f( t, x) $ be continuous together with the first derivative with respect to $ x $ in the half-plane $ \{ t \geq 0, - \infty < x < + \infty \} $. Then the classical solution $ u( t, x) $ in $ \{ t > 0, - \infty < x < \infty \} $ of the Cauchy problem

$$ \tag{1 } \frac{\partial ^ {2} u ( t, x) }{\partial t ^ {2} } - a ^ {2} \frac{\partial ^ {2} u ( t, x) }{\partial x ^ {2} } = f( t, x), $$

$$ \tag{2 } \left . u( t, x) \right | _ {t= 0} = \phi ( x), \left . \frac{\partial u ( t, x) }{\partial t } \right | _ {t=0 } = \psi ( x) , $$

is expressed by d'Alembert's formula:

$$ u( t, x) = \frac{1}{2a} \int\limits _ { 0 } ^ { t } \int\limits _ {x- a( t- \tau ) } ^ { {x+ } a( t- \tau ) } f ( \tau , \xi ) d \xi d \tau + $$

$$ + \frac{1}{2a} \int\limits _ { x- } at ^ { x+ } at \psi ( \xi ) \ d \xi + \frac{1}{2} [ \phi ( x+ at) + \phi ( x- at) ] . $$

If the functions $ \phi $ and $ \psi $ are given and satisfy the above smoothness conditions on the interval $ \{ | x - x _ {0} | < aT \} $, and if $ f( t, x) $ satisfies it in the triangle

$$ Q _ {x _ {0} } ^ {T} = \{ | x - x _ {0} | < a( T- t) ,\ t\geq 0 \} , $$

then d'Alembert's formula gives the unique solution of the problem (1), (2) in $ Q _ {x _ {0} } ^ {T} $. The requirements on the given functions may be weakened if one is interested in solutions in a certain generalized sense. For instance, it follows from d'Alembert's formula that if $ f $ is integrable with respect to any triangle $ Q _ {x _ {0} } ^ {T} $, if $ \psi $ is locally integrable and if $ \phi $ is continuous, the weak solution of Cauchy's problem (1), (2) may be defined as a uniform limit (in any $ Q _ {x _ {0} } ^ {T} $) of classical solutions with smooth data and is also expressed by d'Alembert's formula.

The formula was named after J. d'Alembert (1747).

References

[1] V.S. Vladimirov, "Equations of mathematical physics" , MIR (1984) (Translated from Russian)
[2] A.N. Tikhonov, A.A. Samarskii, "Partial differential equations of mathematical physics" , 1–2 , Holden-Day (1976) (Translated from Russian)
[a1] R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , 2 , Interscience (1965) (Translated from German)
How to Cite This Entry:
D'Alembert formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=D%27Alembert_formula&oldid=15811
This article was adapted from an original article by A.K. Gushchin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article