Namespaces
Variants
Actions

Difference between revisions of "Correlation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
c0265201.png
 +
$#A+1 = 91 n = 0
 +
$#C+1 = 91 : ~/encyclopedia/old_files/data/C026/C.0206520 Correlation,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''duality''
 
''duality''
  
A bijective mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c0265201.png" /> between projective spaces of the same finite dimension such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c0265202.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c0265203.png" />. The image of a sum of subspaces under a correlation is the intersection of their images and, conversely, the image of an intersection is the sum of the images. In particular, the image of a point is a hyperplane and vice versa. A necessary and sufficient condition for the existence of a correlation of a projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c0265204.png" /> over a division ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c0265205.png" /> onto a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c0265206.png" /> over a division ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c0265207.png" /> is that there exists an anti-isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c0265208.png" />, i.e. a bijective mapping for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c0265209.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652010.png" />; in that case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652011.png" /> is dual to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652012.png" />. Examples of spaces with an auto-correlation, i.e. a correlation onto itself, are the real projective spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652013.png" />, the complex projective spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652014.png" /> and the quaternion projective spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652015.png" />.
+
A bijective mapping $  \kappa $
 +
between projective spaces of the same finite dimension such that $  S _ {p} \subset  S _ {q} $
 +
implies $  \kappa ( S _ {q} ) \subset  \kappa ( S _ {p} ) $.  
 +
The image of a sum of subspaces under a correlation is the intersection of their images and, conversely, the image of an intersection is the sum of the images. In particular, the image of a point is a hyperplane and vice versa. A necessary and sufficient condition for the existence of a correlation of a projective space $  \Pi _ {n} ( K) $
 +
over a division ring $  K $
 +
onto a space $  \Pi _ {n} ( L) $
 +
over a division ring $  L $
 +
is that there exists an anti-isomorphism $  \alpha : K \rightarrow L $,  
 +
i.e. a bijective mapping for which $  \alpha ( x + y ) = \alpha ( x) + \alpha ( y) $,  
 +
$  \alpha ( x y ) = \alpha ( y) \alpha ( x) $;  
 +
in that case $  \Pi _ {n} ( L) $
 +
is dual to $  \Pi _ {n} ( K) $.  
 +
Examples of spaces with an auto-correlation, i.e. a correlation onto itself, are the real projective spaces $  ( K = \mathbf R , \alpha = \mathop{\rm id} ) $,  
 +
the complex projective spaces $  ( K = \mathbf C , \alpha : z \rightarrow \overline{z}\; ) $
 +
and the quaternion projective spaces $  ( K = \mathbf H , \alpha : z \rightarrow \overline{z}\; ) $.
  
A polarity is an auto-correlation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652016.png" /> satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652017.png" />. A projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652018.png" /> over a division ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652019.png" /> admits a polarity if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652020.png" /> admits an involutory anti-automorphism, i.e. an anti-automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652021.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652022.png" />.
+
A polarity is an auto-correlation $  \kappa $
 +
satisfying $  \kappa  ^ {2} = \mathop{\rm id} $.  
 +
A projective space $  \Pi _ {n} ( K) $
 +
over a division ring $  K $
 +
admits a polarity if and only if $  K $
 +
admits an involutory anti-automorphism, i.e. an anti-automorphism $  \alpha $
 +
with $  \alpha  ^ {2} = \mathop{\rm id} $.
  
A subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652023.png" /> is called a null subspace relative to an auto-correlation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652024.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652025.png" /> for any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652026.png" />, and strictly isotropic if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652027.png" />. Any strictly isotropic subspace is a null subspace. A polarity relative to which the whole space is a null space is called a null (or symplectic) polarity (see also [[Polarity|Polarity]]).
+
A subspace $  W $
 +
is called a null subspace relative to an auto-correlation $  \kappa $
 +
if $  P \subset  \kappa ( P) $
 +
for any point $  P \in W $,  
 +
and strictly isotropic if $  W \subset  \kappa ( W) $.  
 +
Any strictly isotropic subspace is a null subspace. A polarity relative to which the whole space is a null space is called a null (or symplectic) polarity (see also [[Polarity|Polarity]]).
  
Let the projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652028.png" /> over a division ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652029.png" /> be interpreted as the set of linear subspaces of the (left) linear space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652030.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652031.png" />. A semi-bilinear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652032.png" /> is a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652033.png" /> together with an anti-automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652034.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652035.png" /> such that
+
Let the projective space $  \Pi _ {n} ( K) $
 +
over a division ring $  K $
 +
be interpreted as the set of linear subspaces of the (left) linear space $  K  ^ {n+} 1 $
 +
over $  K $.  
 +
A semi-bilinear form on $  K  ^ {n+} 1 $
 +
is a mapping $  f : K  ^ {n+} 1 \times K  ^ {n+} 1 \rightarrow K $
 +
together with an anti-automorphism $  \alpha $
 +
of $  K $
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652036.png" /></td> </tr></table>
+
$$
 +
f ( x + y , z )  = \
 +
f ( x , z ) + f ( y , z ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652037.png" /></td> </tr></table>
+
$$
 +
f ( x , y + z )  = f ( x , y ) + f ( x , z ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652038.png" /></td> </tr></table>
+
$$
 +
f ( k x , y )  = k f ( x , y ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652039.png" /></td> </tr></table>
+
$$
 +
f ( x , k y )  = f ( x , y ) \alpha ( k) .
 +
$$
  
In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652040.png" /> is a field and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652041.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652042.png" /> is a bilinear form. A semi-bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652043.png" /> is called non-degenerate provided <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652044.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652045.png" /> (all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652046.png" />) implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652047.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652048.png" />, respectively). Any auto-correlation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652049.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652050.png" /> can be represented with the aid of a non-degenerate semi-bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652051.png" /> in the following way: for a subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652052.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652053.png" /> its image is the orthogonal complement of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652054.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652055.png" />:
+
In particular, if $  K $
 +
is a field and $  \alpha = \mathop{\rm id} $,  
 +
then $  f $
 +
is a bilinear form. A semi-bilinear form $  f $
 +
is called non-degenerate provided $  f ( x , y ) = 0 $
 +
for all $  x $(
 +
all $  y $)  
 +
implies $  y = 0 $(
 +
$  x = 0 $,  
 +
respectively). Any auto-correlation $  \kappa $
 +
of $  \Pi _ {n} ( K) $
 +
can be represented with the aid of a non-degenerate semi-bilinear form $  f $
 +
in the following way: for a subspace $  V $
 +
of $  K  ^ {n+} 1 $
 +
its image is the orthogonal complement of $  V $
 +
with respect to $  f $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652056.png" /></td> </tr></table>
+
$$
 +
\kappa ( V)  = \{ {y \in K  ^ {n+} 1 } : {f ( x , y ) = 0 \textrm{ for  all  } \
 +
x \in V } \}
 +
$$
  
(the Birkhoff–von Neumann theorem, ). <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652057.png" /> is a polarity if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652058.png" /> is reflexive, i.e. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652059.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652060.png" />. By multiplying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652061.png" /> by a suitable element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652062.png" /> one can bring any reflexive non-degenerate semi-bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652063.png" /> and the corresponding automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652064.png" /> in either of the following two forms:
+
(the Birkhoff–von Neumann theorem, ). $  \kappa $
 +
is a polarity if and only if $  f $
 +
is reflexive, i.e. if $  f ( x , y ) = 0 $
 +
implies $  f ( y , x ) = 0 $.  
 +
By multiplying $  f $
 +
by a suitable element of $  K $
 +
one can bring any reflexive non-degenerate semi-bilinear form $  f $
 +
and the corresponding automorphism $  \alpha $
 +
in either of the following two forms:
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652065.png" /> is an involution, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652066.png" />, and
+
1) $  \alpha $
 +
is an involution, i.e. $  \alpha  ^ {2} = \mathop{\rm id} $,  
 +
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652067.png" /></td> </tr></table>
+
$$
 +
f ( y , x )  = \alpha ( f ( x , y ) ) .
 +
$$
  
In this case one calls <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652068.png" /> symmetric if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652069.png" /> (and hence necessarily <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652070.png" /> is a field) and Hermitian if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652071.png" />.
+
In this case one calls $  f $
 +
symmetric if $  \alpha = \mathop{\rm id} $(
 +
and hence necessarily $  K $
 +
is a field) and Hermitian if $  \alpha \neq  \mathop{\rm id} $.
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652072.png" /> (and hence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652073.png" /> is a field) and
+
2) $  \alpha = \mathop{\rm id} $(
 +
and hence $  K $
 +
is a field) and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652074.png" /></td> </tr></table>
+
$$
 +
f ( y , x )  = -
 +
f ( x , y ) .
 +
$$
  
Such an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652075.png" /> is called anti-symmetric.
+
Such an $  f $
 +
is called anti-symmetric.
  
A special example of a correlation is the following. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652076.png" /> be a projective space over a division ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652077.png" />. Define the opposite division ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652078.png" /> as the set of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652079.png" /> with the same addition but with multiplication
+
A special example of a correlation is the following. Let $  \Pi _ {n} ( K) $
 +
be a projective space over a division ring $  K $.  
 +
Define the opposite division ring $  K  ^ {o} $
 +
as the set of elements of $  K $
 +
with the same addition but with multiplication
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652080.png" /></td> </tr></table>
+
$$
 +
x \cdot y  = \
 +
y x .
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652081.png" /> is an anti-isomorphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652082.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652083.png" /> which defines the canonical correlation from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652084.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652085.png" />. The (left) projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652086.png" />, which can be identified with the right projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652087.png" />, i.e. with the set of linear subspaces of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652088.png" />-dimensional right vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652089.png" />, is the (canonical) dual space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652090.png" /> (cf. [[Projective algebra|Projective algebra]], the construction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652091.png" />).
+
$  \alpha : x \rightarrow x $
 +
is an anti-isomorphism from $  K $
 +
onto $  K  ^ {o} $
 +
which defines the canonical correlation from $  \Pi _ {n} ( K) $
 +
onto $  \Pi _ {n} ( K  ^ {o} ) $.  
 +
The (left) projective space $  \Pi _ {n} ( K  ^ {o} ) $,  
 +
which can be identified with the right projective space $  \Pi _ {n} ( K)  ^ {*} $,  
 +
i.e. with the set of linear subspaces of the $  ( n + 1 ) $-
 +
dimensional right vector space $  K  ^ {n+} 1 $,  
 +
is the (canonical) dual space of $  \Pi _ {n} ( K) $(
 +
cf. [[Projective algebra|Projective algebra]], the construction of $  \Pi _ {n} $).
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Baer,  "Linear algebra and projective geometry" , Acad. Press  (1952)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G. Birkhoff,  J. von Neumann,  "The logic of quantum mechanics"  ''Ann. of Math.'' , '''37'''  (1936)  pp. 823–843</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J.A. Dieudonné,  "La géométrie des groups classiques" , Springer  (1963)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  D.R. Hughes,  F.C. Piper,  "Projective planes" , Springer  (1972)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Baer,  "Linear algebra and projective geometry" , Acad. Press  (1952)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G. Birkhoff,  J. von Neumann,  "The logic of quantum mechanics"  ''Ann. of Math.'' , '''37'''  (1936)  pp. 823–843</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J.A. Dieudonné,  "La géométrie des groups classiques" , Springer  (1963)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  D.R. Hughes,  F.C. Piper,  "Projective planes" , Springer  (1972)</TD></TR></table>

Revision as of 17:31, 5 June 2020


duality

A bijective mapping $ \kappa $ between projective spaces of the same finite dimension such that $ S _ {p} \subset S _ {q} $ implies $ \kappa ( S _ {q} ) \subset \kappa ( S _ {p} ) $. The image of a sum of subspaces under a correlation is the intersection of their images and, conversely, the image of an intersection is the sum of the images. In particular, the image of a point is a hyperplane and vice versa. A necessary and sufficient condition for the existence of a correlation of a projective space $ \Pi _ {n} ( K) $ over a division ring $ K $ onto a space $ \Pi _ {n} ( L) $ over a division ring $ L $ is that there exists an anti-isomorphism $ \alpha : K \rightarrow L $, i.e. a bijective mapping for which $ \alpha ( x + y ) = \alpha ( x) + \alpha ( y) $, $ \alpha ( x y ) = \alpha ( y) \alpha ( x) $; in that case $ \Pi _ {n} ( L) $ is dual to $ \Pi _ {n} ( K) $. Examples of spaces with an auto-correlation, i.e. a correlation onto itself, are the real projective spaces $ ( K = \mathbf R , \alpha = \mathop{\rm id} ) $, the complex projective spaces $ ( K = \mathbf C , \alpha : z \rightarrow \overline{z}\; ) $ and the quaternion projective spaces $ ( K = \mathbf H , \alpha : z \rightarrow \overline{z}\; ) $.

A polarity is an auto-correlation $ \kappa $ satisfying $ \kappa ^ {2} = \mathop{\rm id} $. A projective space $ \Pi _ {n} ( K) $ over a division ring $ K $ admits a polarity if and only if $ K $ admits an involutory anti-automorphism, i.e. an anti-automorphism $ \alpha $ with $ \alpha ^ {2} = \mathop{\rm id} $.

A subspace $ W $ is called a null subspace relative to an auto-correlation $ \kappa $ if $ P \subset \kappa ( P) $ for any point $ P \in W $, and strictly isotropic if $ W \subset \kappa ( W) $. Any strictly isotropic subspace is a null subspace. A polarity relative to which the whole space is a null space is called a null (or symplectic) polarity (see also Polarity).

Let the projective space $ \Pi _ {n} ( K) $ over a division ring $ K $ be interpreted as the set of linear subspaces of the (left) linear space $ K ^ {n+} 1 $ over $ K $. A semi-bilinear form on $ K ^ {n+} 1 $ is a mapping $ f : K ^ {n+} 1 \times K ^ {n+} 1 \rightarrow K $ together with an anti-automorphism $ \alpha $ of $ K $ such that

$$ f ( x + y , z ) = \ f ( x , z ) + f ( y , z ) , $$

$$ f ( x , y + z ) = f ( x , y ) + f ( x , z ) , $$

$$ f ( k x , y ) = k f ( x , y ) , $$

$$ f ( x , k y ) = f ( x , y ) \alpha ( k) . $$

In particular, if $ K $ is a field and $ \alpha = \mathop{\rm id} $, then $ f $ is a bilinear form. A semi-bilinear form $ f $ is called non-degenerate provided $ f ( x , y ) = 0 $ for all $ x $( all $ y $) implies $ y = 0 $( $ x = 0 $, respectively). Any auto-correlation $ \kappa $ of $ \Pi _ {n} ( K) $ can be represented with the aid of a non-degenerate semi-bilinear form $ f $ in the following way: for a subspace $ V $ of $ K ^ {n+} 1 $ its image is the orthogonal complement of $ V $ with respect to $ f $:

$$ \kappa ( V) = \{ {y \in K ^ {n+} 1 } : {f ( x , y ) = 0 \textrm{ for all } \ x \in V } \} $$

(the Birkhoff–von Neumann theorem, ). $ \kappa $ is a polarity if and only if $ f $ is reflexive, i.e. if $ f ( x , y ) = 0 $ implies $ f ( y , x ) = 0 $. By multiplying $ f $ by a suitable element of $ K $ one can bring any reflexive non-degenerate semi-bilinear form $ f $ and the corresponding automorphism $ \alpha $ in either of the following two forms:

1) $ \alpha $ is an involution, i.e. $ \alpha ^ {2} = \mathop{\rm id} $, and

$$ f ( y , x ) = \alpha ( f ( x , y ) ) . $$

In this case one calls $ f $ symmetric if $ \alpha = \mathop{\rm id} $( and hence necessarily $ K $ is a field) and Hermitian if $ \alpha \neq \mathop{\rm id} $.

2) $ \alpha = \mathop{\rm id} $( and hence $ K $ is a field) and

$$ f ( y , x ) = - f ( x , y ) . $$

Such an $ f $ is called anti-symmetric.

A special example of a correlation is the following. Let $ \Pi _ {n} ( K) $ be a projective space over a division ring $ K $. Define the opposite division ring $ K ^ {o} $ as the set of elements of $ K $ with the same addition but with multiplication

$$ x \cdot y = \ y x . $$

$ \alpha : x \rightarrow x $ is an anti-isomorphism from $ K $ onto $ K ^ {o} $ which defines the canonical correlation from $ \Pi _ {n} ( K) $ onto $ \Pi _ {n} ( K ^ {o} ) $. The (left) projective space $ \Pi _ {n} ( K ^ {o} ) $, which can be identified with the right projective space $ \Pi _ {n} ( K) ^ {*} $, i.e. with the set of linear subspaces of the $ ( n + 1 ) $- dimensional right vector space $ K ^ {n+} 1 $, is the (canonical) dual space of $ \Pi _ {n} ( K) $( cf. Projective algebra, the construction of $ \Pi _ {n} $).

Comments

References

[a1] R. Baer, "Linear algebra and projective geometry" , Acad. Press (1952)
[a2] G. Birkhoff, J. von Neumann, "The logic of quantum mechanics" Ann. of Math. , 37 (1936) pp. 823–843
[a3] J.A. Dieudonné, "La géométrie des groups classiques" , Springer (1963)
[a4] D.R. Hughes, F.C. Piper, "Projective planes" , Springer (1972)
How to Cite This Entry:
Correlation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Correlation&oldid=13946