Namespaces
Variants
Actions

Clifford theory

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


(for group representations)

Let $ N $ be a normal subgroup of a finite group $ G $ and let $ RG $ be the group algebra of $ G $ over a commutative ring $ R $. Given an $ RN $- module $ V $ and $ g \in G $, let $ ^ {g} V $ be the $ RN $- module whose underlying $ R $- module is $ V $ and on which $ N $ acts according to the rule $ n * v = ( g ^ {- 1 } ng ) v $, $ v \in V $, where $ n * v $ denotes the module operation in $ ^ {g} V $ and $ nv $ the operation in $ V $. By definition, the inertia group $ H $ of $ V $ is $ H = \{ {g \in G } : {V \cong ^ {g} V } \} $. It is clear that $ H $ is a subgroup of $ G $ containing $ N $; if $ H = G $, it is customary to say that $ V $ is $ G $- invariant

Important information concerning simple and indecomposable $ RG $- modules can be obtained by applying (perhaps repeatedly) three basic operations:

i) restriction to $ RN $;

ii) extension from $ RN $; and

iii) induction from $ RN $. This is the content of the so-called Clifford theory, which was originally developed by A.H. Clifford (see [a1]) for the classical case where $ R $ is a field. General references for this area are [a2], [a3].

The most important results are as follows.

Restriction to normal subgroups of representations.

Given a subgroup $ H $ of $ G $ and an $ RG $- module $ U $, let $ U _ {H} $ denote the restriction of $ U $ to $ RH $. If $ V $ is an $ RH $- module, then $ V ^ {G} $ denotes the induced module. For any integer $ e \geq 1 $, let $ eV $ be the direct sum of $ e $ copies of a given module $ V $. A classical Clifford theorem, originally proved for the case where $ R $ is a field, holds for an arbitrary commutative ring $ R $ and asserts the following. Assume that $ U $ is a simple $ RG $- module. Then there exists a simple submodule $ V $ of $ U _ {N} $; for any such $ V $ and the inertia group $ H $ of $ V $, the following properties hold.

a) $ U _ {N} \cong e ( \oplus _ {t \in T } ^ {t} V ) $, where $ T $ is a left transversal for $ H $ in $ G $. Moreover, the modules $ ^ {t} V $, $ t \in T $, are pairwise non-isomorphic simple $ RN $- modules.

b) The sum $ W $ of all submodules of $ U _ {N} $ isomorphic to $ V $ is a simple $ RH $- module such that $ W _ {N} \cong eV $ and $ U \cong W ^ {G} $.

The above result holds in the more general case where $ {G / N } $ is a finite group. However, if $ {G / N } $ is infinite, then Clifford's theorem is no longer true (see [a3]).

Induction from normal subgroups of representations.

The principal result concerning induction is the Green indecomposable theorem, described below. Assume that $ R $ is a complete local ring and a principal ideal domain (cf. also Principal ideal ring). An integral domain $ S $ containing $ R $ is called an extension, of $ R $, written $ {S / R } $, if the following conditions hold:

A) $ S $ is a principal ideal domain and a local ring;

B) $ S $ is $ R $- free;

C) $ J ( S ) ^ {e} = J ( R ) S $ for some integer $ e \geq 1 $. One says that $ {S / R } $ is finite if $ S $ is a finitely generated $ R $- module. An $ RG $- module $ V $ is said to be absolutely indecomposable if for every finite extension $ {S / R } $, $ S \otimes _ {R} V $ is an indecomposable $ SG $- module.

Assume that the field $ {R / {J ( R ) } } $ is of prime characteristic $ p $( cf. also Characteristic of a field) and that $ {G / N } $ is a $ p $- group. If $ V $ is a finitely generated absolutely indecomposable $ RN $- module, then the induced module $ V ^ {G} $ is absolutely indecomposable. Green's original statement pertained to the case where $ R $ is a field. A proof in full generality is contained in [a3].

Extension from normal subgroups of representations.

The best result to date (1996) is Isaacs theorem, described below. Let $ N $ be a normal Hall subgroup of a finite group $ G $, let $ R $ be an arbitrary commutative ring and let $ V $ be a simple $ G $- invariant $ RN $- module. Then $ V $ extends to an $ RG $- module, i.e. $ V \cong U _ {N} $ for some $ RG $- module $ U $. Originally, R. Isaacs proved only the special case where $ R $ is a field. A proof in full generality can be found in [a3].

References

[a1] A.H. Clifford, "Representations induced in an invariant subgroup" Ann. of Math. (2) , 38 pp. 533–550
[a2] G. Karpilovsky, "Clifford theory for group representations" , North-Holland (1989)
[a3] G. Karpilovsky, "Group representations" , 3 , North-Holland (1994)
How to Cite This Entry:
Clifford theory. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Clifford_theory&oldid=46360
This article was adapted from an original article by G. Karpilovsky (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article