Namespaces
Variants
Actions

Difference between revisions of "Character group"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex,msc,mr,zbl,links)
Line 1: Line 1:
''of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c0215301.png" />''
+
{{MSC|20}}
 +
{{TEX|done}}
  
The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c0215302.png" /> of all characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c0215303.png" /> (cf. [[Character of a group|Character of a group]]) with values in an Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c0215304.png" />, under the operation
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c0215305.png" /></td> </tr></table>
 
  
induced by the operation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c0215306.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c0215307.png" />, then
+
The ''cahracter group of a group $G$''
 +
is the group $X(G) = \def\Hom{\textrm{Hom}}\Hom(G,A)$ of all characters of $G$ (cf.
 +
[[Character of a group|Character of a group]]) with values in an Abelian group $A$, under the operation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c0215308.png" /></td> </tr></table>
+
$$\def\a{\alpha}\def\b{\beta}(\a\b)(g) = \a(g)\b(g),\quad g\in G,\quad \a,\b\in X(G),$$
 +
induced by the operation in $A$. When $A=T = \{ z\in\C \;|\ \  |z| =1\}$, then
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c0215309.png" /> are quasi-cyclic groups, one for each prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153010.png" />. This group is algebraically compact (see [[Pure subgroup|Pure subgroup]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153011.png" /> is Abelian, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153012.png" /> is a [[Divisible group|divisible group]] if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153013.png" /> is torsion free and it is a reduced group if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153014.png" /> is periodic [[#References|[4]]].
+
$$X(G) \simeq \prod_p \Hom(G,\Z(p^\infty)),$$
 +
where $\Z(p^\infty)$ are [[Quasi-cyclic group | quasi-cyclic groups]], one for each prime number $p$. This group is algebraically compact (see
 +
[[Pure submodule|Pure submodule]]). If $G$ is Abelian, then $X(G)$ is a
 +
[[Divisible group|divisible group]] if and only if $G$ is torsion free and it is a reduced group if and only if $G$ is a [[Torsion group | torsion group]]
 +
{{Cite|Fu}}.
  
The character group of a topological group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153015.png" /> is the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153016.png" /> of all continuous homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153017.png" />, equipped with the compact-open topology. It is a Hausdorff Abelian topological group. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153018.png" /> is locally compact, then so is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153019.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153020.png" /> is compact, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153021.png" /> is discrete, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153022.png" /> is discrete, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153023.png" /> is compact.
+
The character group of a topological group $G$ is the group $X(G)$ of all continuous homomorphisms $G\to T$, equipped with the [[Compact-open_topology| compact-open topology]]. It is a Hausdorff Abelian topological group. If $G$ is locally compact, then so is $X(G)$; if $G$ is compact, then $X(G)$ is discrete, and if $G$ is discrete, then $X(G)$ is compact.
  
 
Examples of character groups:
 
Examples of character groups:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153024.png" /></td> </tr></table>
+
$$X(T)\simeq \Z,\quad X(\Z)\simeq T,\quad X(\R) \simeq \R,\quad X(G)\simeq G $$
 +
for any finite discrete Abelian group $G$.
  
for any finite discrete Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153025.png" />.
+
With every continuous homomorphism of topological groups $\def\phi{\varphi}\phi:G\to H$ there is associated a homomorphism of the character groups $\phi^*:X(H)\to X(G)$. Here the correspondence $G\mapsto X(G)$, $\phi\mapsto\phi^*$, is a contravariant functor from the category of topological groups into the category of Abelian topological groups. If the category is restricted to locally compact Abelian groups $G$, then this functor determines an equivalence of that category and its dual category (see
 +
[[Pontryagin duality|Pontryagin duality]]).
  
With every continuous homomorphism of topological groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153026.png" /> there is associated a homomorphism of the character groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153027.png" />. Here the correspondence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153029.png" />, is a contravariant functor from the category of topological groups into the category of Abelian topological groups. If the category is restricted to locally compact Abelian groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153030.png" />, then this functor determines an equivalence of that category and its dual category (see [[Pontryagin duality|Pontryagin duality]]).
+
The character group of an [[Algebraic group | algebraic group]] $G$ over a field $K$ is the group $X(G)$ of all rational characters $\def\G{\mathbb{G}}G\to K^* = \G_m$. If $X(G)$ is an Abelian affine algebraic group, then $K[G]$ generates the space $G$ (that is, is a basis in this space) if and only if $G$ is a
 +
[[Diagonalizable algebraic group|diagonalizable algebraic group]], i.e. is isomorphic to a closed subgroup of a certain [[Algebraic torus | algebraic torus]] $\G_m^s$. Here $X(G)$ is a finitely generated Abelian group (without $p$-torsion if $\def\char{\textrm{char}\;}\char K = p > 0$), and $K[G]$ is the [[group algebra]] of $X(G) $ over $K$, which makes it possible to define a duality between the categories of diagonalizable groups and that of finitely generated Abelian groups (without $p$-torsion if $\char K = p > 0$), cf.
 +
{{Cite|Bo}}. When $G$ is a finite group (regarded as a $0$-dimensional algebraic group) and $\char K = 0$, then this duality is the same as the classical
 +
[[Duality|duality]] of finite Abelian groups.
  
The character group of an algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153031.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153032.png" /> is the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153033.png" /> of all rational characters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153034.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153035.png" /> is an Abelian affine algebraic group, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153036.png" /> generates the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153037.png" /> (that is, is a basis in this space) if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153038.png" /> is a [[Diagonalizable algebraic group|diagonalizable algebraic group]], i.e. is isomorphic to a closed subgroup of a certain torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153039.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153040.png" /> is a finitely generated Abelian group (without <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153041.png" />-torsion if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153042.png" />), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153043.png" /> is the group algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153044.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153045.png" />, which makes it possible to define a duality between the categories of diagonalizable groups and that of finitely generated Abelian groups (without <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153046.png" />-torsion if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153047.png" />), cf. [[#References|[1]]]. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153048.png" /> is a finite group (regarded as a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153049.png" />-dimensional algebraic group) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153050.png" />, then this duality is the same as the classical [[Duality|duality]] of finite Abelian groups.
+
For any connected algebraic group $G$, the group $X(G) $ is torsion free. In particular, a diagonalizable group $G$ is a torus if and only if $X(G)\simeq \Z^s$.
  
For any connected algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153051.png" />, the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153052.png" /> is torsion free. In particular, a diagonalizable group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153053.png" /> is a torus if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153054.png" />.
 
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Borel,  "Linear algebraic groups" , Benjamin  (1969)  {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S.A. Morris,  "Pontryagin duality and the structure of locally compact Abelian groups" , ''London Math. Soc. Lecture Notes'' , '''29''' , Cambridge Univ. Press  (1977)  {{MR|0442141}} {{ZBL|0446.22006}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.S. Pontryagin,  "Topological groups" , Princeton Univ. Press  (1958)  (Translated from Russian)  {{MR|0201557}} {{ZBL|0022.17104}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  L. Fuchs,  "Infinite abelian groups" , '''1''' , Acad. Press  (1970)  {{MR|0255673}} {{ZBL|0209.05503}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  J.E. Humphreys,  "Linear algebraic groups" , Springer  (1975)  {{MR|0396773}} {{ZBL|0325.20039}} </TD></TR></table>
 
  
  
 +
====Comments====
 +
An Abelian group is reduced if it contains no non-trivial divisible subgroups.
  
====Comments====
+
Above, the phrase  "character" is of course strictly used in its narrowest meaning of a (continuous) homomorphism $G\to T$ and not in the sense of the character of some representation.
In the article above <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153055.png" /> denotes the circle group. A periodic group is also called a torsion group. An Abelian group is reduced if it contains no non-trivial divisible subgroups.
 
  
Above, the phrase  "character"  is of course strictly used in its narrowest meaning of a (continuous) homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021530/c02153056.png" /> and not in the sense of the character of some representation.
+
The character groups of many locally Abelian groups can be found in
 +
{{Cite|HeRo}}.
  
The character groups of many locally Abelian groups can be found in [[#References|[a1]]].
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Hewitt,  K.A. Ross,  "Abstract harmonic analysis" , '''1''' , Springer  (1963)  {{MR|0156915}} {{ZBL|0115.10603}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Bourbaki,  "Elements of mathematics. Spectral theories" , Addison-Wesley (1977)  (Translated from French)  {{MR|0583191}} {{ZBL|1106.46004}} </TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|Bo}}||valign="top"|  A. Borel,  "Linear algebraic groups", Benjamin  (1969)  {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}}
 +
|-
 +
|valign="top"|{{Ref|Bo2}}||valign="top"|  N. Bourbaki,  "Elements of mathematics. Spectral theories", Addison-Wesley  (1977)  (Translated from French)  {{MR|0583191}} {{ZBL|1106.46004}}
 +
|-
 +
|valign="top"|{{Ref|Fu}}||valign="top"|  L. Fuchs,  "Infinite abelian groups", '''1''', Acad. Press  (1970)  {{MR|0255673}} {{ZBL|0209.05503}}
 +
|-
 +
|valign="top"|{{Ref|HeRo}}||valign="top"| E. Hewitt,  K.A. Ross,  "Abstract harmonic analysis", '''1''', Springer  (1963)  {{MR|0156915}} {{ZBL|0115.10603}}
 +
|-
 +
|valign="top"|{{Ref|Hu}}||valign="top"|  J.E. Humphreys,  "Linear algebraic groups", Springer  (1975)  {{MR|0396773}} {{ZBL|0325.20039}}
 +
|-
 +
|valign="top"|{{Ref|Mo}}||valign="top"| S.A. Morris,  "Pontryagin duality and the structure of locally compact Abelian groups", ''London Math. Soc. Lecture Notes'', '''29''', Cambridge Univ. Press  (1977)  {{MR|0442141}} {{ZBL|0446.22006}}
 +
|-
 +
|valign="top"|{{Ref|Po}}||valign="top"|  L.S. Pontryagin,  "Topological groups", Princeton Univ. Press (1958)  (Translated from Russian)  {{MR|0201557}} {{ZBL|0022.17104}}
 +
|-
 +
|}

Revision as of 21:05, 29 April 2012

2020 Mathematics Subject Classification: Primary: 20-XX [MSN][ZBL]


The cahracter group of a group $G$ is the group $X(G) = \def\Hom{\textrm{Hom}}\Hom(G,A)$ of all characters of $G$ (cf. Character of a group) with values in an Abelian group $A$, under the operation

$$\def\a{\alpha}\def\b{\beta}(\a\b)(g) = \a(g)\b(g),\quad g\in G,\quad \a,\b\in X(G),$$ induced by the operation in $A$. When $A=T = \{ z\in\C \;|\ \ |z| =1\}$, then

$$X(G) \simeq \prod_p \Hom(G,\Z(p^\infty)),$$ where $\Z(p^\infty)$ are quasi-cyclic groups, one for each prime number $p$. This group is algebraically compact (see Pure submodule). If $G$ is Abelian, then $X(G)$ is a divisible group if and only if $G$ is torsion free and it is a reduced group if and only if $G$ is a torsion group [Fu].

The character group of a topological group $G$ is the group $X(G)$ of all continuous homomorphisms $G\to T$, equipped with the compact-open topology. It is a Hausdorff Abelian topological group. If $G$ is locally compact, then so is $X(G)$; if $G$ is compact, then $X(G)$ is discrete, and if $G$ is discrete, then $X(G)$ is compact.

Examples of character groups:

$$X(T)\simeq \Z,\quad X(\Z)\simeq T,\quad X(\R) \simeq \R,\quad X(G)\simeq G $$ for any finite discrete Abelian group $G$.

With every continuous homomorphism of topological groups $\def\phi{\varphi}\phi:G\to H$ there is associated a homomorphism of the character groups $\phi^*:X(H)\to X(G)$. Here the correspondence $G\mapsto X(G)$, $\phi\mapsto\phi^*$, is a contravariant functor from the category of topological groups into the category of Abelian topological groups. If the category is restricted to locally compact Abelian groups $G$, then this functor determines an equivalence of that category and its dual category (see Pontryagin duality).

The character group of an algebraic group $G$ over a field $K$ is the group $X(G)$ of all rational characters $\def\G{\mathbb{G}}G\to K^* = \G_m$. If $X(G)$ is an Abelian affine algebraic group, then $K[G]$ generates the space $G$ (that is, is a basis in this space) if and only if $G$ is a diagonalizable algebraic group, i.e. is isomorphic to a closed subgroup of a certain algebraic torus $\G_m^s$. Here $X(G)$ is a finitely generated Abelian group (without $p$-torsion if $\def\char{\textrm{char}\;}\char K = p > 0$), and $K[G]$ is the group algebra of $X(G) $ over $K$, which makes it possible to define a duality between the categories of diagonalizable groups and that of finitely generated Abelian groups (without $p$-torsion if $\char K = p > 0$), cf. [Bo]. When $G$ is a finite group (regarded as a $0$-dimensional algebraic group) and $\char K = 0$, then this duality is the same as the classical duality of finite Abelian groups.

For any connected algebraic group $G$, the group $X(G) $ is torsion free. In particular, a diagonalizable group $G$ is a torus if and only if $X(G)\simeq \Z^s$.


Comments

An Abelian group is reduced if it contains no non-trivial divisible subgroups.

Above, the phrase "character" is of course strictly used in its narrowest meaning of a (continuous) homomorphism $G\to T$ and not in the sense of the character of some representation.

The character groups of many locally Abelian groups can be found in [HeRo].


References

[Bo] A. Borel, "Linear algebraic groups", Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201
[Bo2] N. Bourbaki, "Elements of mathematics. Spectral theories", Addison-Wesley (1977) (Translated from French) MR0583191 Zbl 1106.46004
[Fu] L. Fuchs, "Infinite abelian groups", 1, Acad. Press (1970) MR0255673 Zbl 0209.05503
[HeRo] E. Hewitt, K.A. Ross, "Abstract harmonic analysis", 1, Springer (1963) MR0156915 Zbl 0115.10603
[Hu] J.E. Humphreys, "Linear algebraic groups", Springer (1975) MR0396773 Zbl 0325.20039
[Mo] S.A. Morris, "Pontryagin duality and the structure of locally compact Abelian groups", London Math. Soc. Lecture Notes, 29, Cambridge Univ. Press (1977) MR0442141 Zbl 0446.22006
[Po] L.S. Pontryagin, "Topological groups", Princeton Univ. Press (1958) (Translated from Russian) MR0201557 Zbl 0022.17104
How to Cite This Entry:
Character group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Character_group&oldid=21823
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article