Namespaces
Variants
Actions

Difference between revisions of "Bell numbers"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(link to oeis)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
The Bell numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110240/b1102401.png" /> are given by
+
{{TEX|done}}{{MSC|11B73}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110240/b1102402.png" /></td> </tr></table>
+
The Bell numbers $B_0,B_1,\ldots$ are given by
 +
 
 +
$$\sum_{n=0}^\infty B_n\frac{x^n}{n!}=e^{e^x-1}$$
  
 
or by
 
or by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110240/b1102403.png" /></td> </tr></table>
+
$$B_{n+1}=\sum_{k=0}^n\binom nkB_k.$$
  
 
Also,
 
Also,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110240/b1102404.png" /></td> </tr></table>
+
$$B_n=\sum_{k=1}^nS(n,k),$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110240/b1102405.png" /> are Stirling numbers (cf. [[Combinatorial analysis|Combinatorial analysis]]) of the second kind, so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110240/b1102406.png" /> is the total number of partitions of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110240/b1102407.png" />-set.
+
where $S(n,k)$ are [[Stirling numbers]] of the second kind (cf. [[Combinatorial analysis]]), so that $B_n$ is the total number of partitions of an $n$-set.
  
They are equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110240/b1102408.png" />.
+
They are equal to $1,1,2,5,15,52,203,877,4140,\ldots$ ({{OEIS|A000110}}).
  
 
The name honours E.T. Bell.
 
The name honours E.T. Bell.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L. Comtet,   "Advanced combinatorics" , Reidel (1974)</TD></TR></table>
+
 
 +
* L. Comtet, "Advanced combinatorics", Reidel (1974) {{ZBL|0283.05001}}

Latest revision as of 07:26, 7 November 2023

2020 Mathematics Subject Classification: Primary: 11B73 [MSN][ZBL]

The Bell numbers $B_0,B_1,\ldots$ are given by

$$\sum_{n=0}^\infty B_n\frac{x^n}{n!}=e^{e^x-1}$$

or by

$$B_{n+1}=\sum_{k=0}^n\binom nkB_k.$$

Also,

$$B_n=\sum_{k=1}^nS(n,k),$$

where $S(n,k)$ are Stirling numbers of the second kind (cf. Combinatorial analysis), so that $B_n$ is the total number of partitions of an $n$-set.

They are equal to $1,1,2,5,15,52,203,877,4140,\ldots$ (OEIS sequence A000110).

The name honours E.T. Bell.

References

How to Cite This Entry:
Bell numbers. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bell_numbers&oldid=14335
This article was adapted from an original article by N.J.A. Sloane (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article