Namespaces
Variants
Actions

Difference between revisions of "Bauer-Peschl equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (TEX done)
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
A second-order [[Elliptic partial differential equation|elliptic partial differential equation]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200601.png" /> (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200602.png" />) or in the open unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200603.png" /> (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200604.png" />), of the form
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct and if all png images have been replaced by TeX code, please remove this message and the {{TEX|semi-auto}} category.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200605.png" /></td> </tr></table>
+
Out of 27 formulas, 26 were replaced by TEX code.-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200606.png" /></td> </tr></table>
+
{{TEX|semi-auto}}{{TEX|done}}
 +
A second-order [[Elliptic partial differential equation|elliptic partial differential equation]] in $\mathbf{R} ^ { 2 }$ (if $\epsilon = 1$) or in the open unit disc $D _ { 1 } \subset \mathbf{R} ^ { 2 }$ (if $\epsilon = - 1$), of the form
  
By using <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200607.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200608.png" />,
+
\begin{equation*} \Delta u + \epsilon \frac { 4 n ( n + 1 ) } { ( 1 + \epsilon ( x ^ { 2 } + y ^ { 2 } ) ) ^ { 2 } } u = 0, \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200609.png" /></td> </tr></table>
+
\begin{equation*} n \in {\bf N} , \epsilon = \pm 1. \end{equation*}
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006010.png" />, one arrives at the standard notation
+
By using $z = x + i y$, $\bar{z} = x - i y$,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006011.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
\begin{equation*} \frac { \partial } { \partial z } = \frac { 1 } { 2 } \left( \frac { \partial } { \partial x } - i \frac { \partial } { \partial y } \right) , \frac { \partial } { \partial \overline{z} } = \frac { 1 } { 2 } \left( \frac { \partial } { \partial x } + i \frac { \partial } { \partial y } \right), \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006012.png" /></td> </tr></table>
+
$w ( z ) = u ( x , y )$, one arrives at the standard notation
 +
 
 +
\begin{equation} \tag{a1} \frac { \partial ^ { 2 } w } { \partial z \partial \overline{z}} + \epsilon \frac { n ( n + 1 ) } { ( 1 + \epsilon z \overline{z} ) ^ { 2 } } w = 0, \end{equation}
 +
 
 +
\begin{equation*} n \in {\bf N} , \epsilon = \pm 1. \end{equation*}
  
 
This equation attracted interest from the differential-geometric viewpoint from the times of G. Darboux and H.A. Schwarz. It played an important role in the investigation of differential invariants for certain families of complex functions by E. Peschl ([[#References|[a8]]], [[#References|[a9]]]) and has been treated systematically by a number of authors since then. In particular, the papers of K.W. Bauer [[#References|[a2]]], [[#References|[a1]]] have stimulated further investigations and have been significant. Summaries of the results, including the essential contributions of S. Ruscheweyh, M. Kracht and E. Kreyszig can be found in [[#References|[a3]]] and in [[#References|[a7]]].
 
This equation attracted interest from the differential-geometric viewpoint from the times of G. Darboux and H.A. Schwarz. It played an important role in the investigation of differential invariants for certain families of complex functions by E. Peschl ([[#References|[a8]]], [[#References|[a9]]]) and has been treated systematically by a number of authors since then. In particular, the papers of K.W. Bauer [[#References|[a2]]], [[#References|[a1]]] have stimulated further investigations and have been significant. Summaries of the results, including the essential contributions of S. Ruscheweyh, M. Kracht and E. Kreyszig can be found in [[#References|[a3]]] and in [[#References|[a7]]].
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006013.png" />, equation (a1) transforms by stereographic projection into the equation of [[Spherical harmonics|spherical harmonics]]
+
For $\epsilon = + 1$, equation (a1) transforms by stereographic projection into the equation of [[Spherical harmonics|spherical harmonics]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006014.png" /></td> </tr></table>
+
\begin{equation*} \frac { 1 } { \operatorname { sin } ^ { 2 } \vartheta } . \frac { \partial ^ { 2 } Y } { \partial \varphi ^ { 2 } } + \frac { 1 } { \operatorname { sin } \vartheta } . \frac { \partial } { \partial \vartheta } \left( \operatorname { sin } \vartheta . \frac { \partial Y } { \partial \vartheta } \right) + \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006015.png" /></td> </tr></table>
+
\begin{equation*} + n ( n + 1 ) Y = 0. \end{equation*}
  
Separation of variables then readily shows the connection of (a1) with the equations of mathematical physics (cf. also [[Mathematical physics, equations of|Mathematical physics, equations of]]), to wit, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006016.png" />-dimensional potential equation
+
Separation of variables then readily shows the connection of (a1) with the equations of mathematical physics (cf. also [[Mathematical physics, equations of|Mathematical physics, equations of]]), to wit, the $3$-dimensional potential equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006017.png" /></td> </tr></table>
+
\begin{equation*} \Delta _ { 3 } U = 0 \end{equation*}
  
and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006018.png" />-dimensional [[Wave equation|wave equation]]
+
and the $3$-dimensional [[Wave equation|wave equation]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006019.png" /></td> </tr></table>
+
\begin{equation*} \Delta _ { 3 } U = \frac { \partial ^ { 2 } U } { \partial t ^ { 2 } }. \end{equation*}
  
Analogously, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006020.png" /> equation (a1) is connected to the equation of hyperboloid functions and to
+
Analogously, for $\epsilon = - 1$ equation (a1) is connected to the equation of hyperboloid functions and to
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006021.png" /></td> </tr></table>
+
\begin{equation*} \Delta_ { 2 } U = \frac { \partial ^ { 2 } U } { \partial t ^ { 2 } }, \end{equation*}
  
the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006022.png" />-dimensional [[Wave equation|wave equation]] (see [[#References|[a2]]], [[#References|[a1]]]). Moreover, (a1) is related to the generalized axially symmetric potential theory, the theory of poly-analytic and poly-harmonic functions, the theory of Eisenstein series, etc. (see [[#References|[a7]]]).
+
the $2$-dimensional [[Wave equation|wave equation]] (see [[#References|[a2]]], [[#References|[a1]]]). Moreover, (a1) is related to the generalized axially symmetric potential theory, the theory of poly-analytic and poly-harmonic functions, the theory of [[Eisenstein series]], etc. (see [[#References|[a7]]]).
  
 
Motivated by these relations, K.W. Bauer has given detailed representations of the solutions of (a1) by using differential operators:
 
Motivated by these relations, K.W. Bauer has given detailed representations of the solutions of (a1) by using differential operators:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006023.png" /></td> </tr></table>
+
\begin{equation*} w ( z ) = \sum _ { k = 0 } ^ { n } a _ { k } ( z ) . f ^ { ( k ) } ( z ) + \sum _ { k = 0 } ^ { n } b _ { k } ( z ) . \overline { g ^ { ( k ) } ( z ) }, \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006025.png" /> may be arbitrary holomorphic functions (cf. also [[Holomorphic function|Holomorphic function]]). This kind of representation of solutions can be transferred to certain more general equations than (a1), similar to the integral representations of S. Bergman and I.N. Vekua, and facilitates the creation of function theories associated with the classical theory of holomorphic functions (see [[#References|[a2]]], [[#References|[a1]]], [[#References|[a3]]], [[#References|[a4]]], [[#References|[a5]]], [[#References|[a6]]], [[#References|[a7]]]). This allows the treatment of classical problems (e.g. the [[Riemann–Hilbert problem|Riemann–Hilbert problem]], the Cauchy–Kovalevskaya problem, cf. also [[Cauchy–Kovalevskaya theorem|Cauchy–Kovalevskaya theorem]], etc.) for these classes of functions.
+
where $f$ and $g$ may be arbitrary holomorphic functions (cf. also [[Holomorphic function|Holomorphic function]]). This kind of representation of solutions can be transferred to certain more general equations than (a1), similar to the integral representations of S. Bergman and I.N. Vekua, and facilitates the creation of function theories associated with the classical theory of holomorphic functions (see [[#References|[a2]]], [[#References|[a1]]], [[#References|[a3]]], [[#References|[a4]]], [[#References|[a5]]], [[#References|[a6]]], [[#References|[a7]]]). This allows the treatment of classical problems (e.g. the [[Riemann–Hilbert problem|Riemann–Hilbert problem]], the Cauchy–Kovalevskaya problem, cf. also [[Cauchy–Kovalevskaya theorem|Cauchy–Kovalevskaya theorem]], etc.) for these classes of functions.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K.W. Bauer,  "Über die Lösungen der elliptischen Differentialgleichung <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006026.png" /> I–II"  ''J. Reine Angew. Math.'' , '''221'''  (1966)  pp. 48–84; 176–196</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K.W. Bauer,  "Über eine der Differentialgleichung <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006027.png" /> zugeordnete Funktionentheorie"  ''Bonner Math. Schriften'' , '''23'''  (1965)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  K.W. Bauer,  S. Ruscheweyh,  "Differential operators for partial differential equations and function theoretic applications" , ''Lecture Notes Math.'' , '''791''' , Springer  (1980)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  P. Berglez,  "Darstellung und funktionentheoretische Eigenschaften von Lösungen partieller Differentialgleichungen"  ''Habilitationsschrift Techn. Univ. Graz''  (1988)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  R. Heersink,  "Über Lösungsdarstellungen und funktionentheoretische Methoden bei elliptischen Differentialgleichungen"  ''Ber. Math. Statist. Sektion Forschungszentrum Graz'' , '''67'''  (1976)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  R. Heersink,  "Zur Charakterisierung spezieller Lösungsdarstellungen für elliptische Gleichungen"  ''Österr. Akad. d. Wiss., Abt.II'' , '''192''' :  4–7  (1983)  pp. 267–293</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  M. Kracht,  E. Kreyszig,  "Methods of complex analysis in partial differential equations with applications" , Wiley  (1988)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  E. Peschl,  "Les invariants differentiels non holomorphes et leur role dans la theorie de fonctions"  ''Rend. Sem. Mat. Messina'' , '''1'''  (1955)  pp. 100–108</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  E. Peschl,  "Über die Verwendung von Differentialinvarianten bei gewissen Funktionenfamilien und die Übertragung einer darauf gegründeten Methode auf partielle Differentialgleichungen vom elliptischen Typus"  ''Ann. Acad. Sci. Fenn., Ser. A I Math.'' , '''336''' :  6  (1963)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  K.W. Bauer,  "Über die Lösungen der elliptischen Differentialgleichung $( 1 \pm z \bar{z} ) ^ { 2 } w _ { z \bar{z} } + \lambda w = 0$ I–II"  ''J. Reine Angew. Math.'' , '''221'''  (1966)  pp. 48–84; 176–196</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  K.W. Bauer,  "Über eine der Differentialgleichung $( 1 \pm z \bar{z} ) ^ { 2 } w _ { z \bar{z} } \pm n (n+1) w = 0zugeordnete Funktionentheorie"  ''Bonner Math. Schriften'' , '''23'''  (1965)</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  K.W. Bauer,  S. Ruscheweyh,  "Differential operators for partial differential equations and function theoretic applications" , ''Lecture Notes Math.'' , '''791''' , Springer  (1980)</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  P. Berglez,  "Darstellung und funktionentheoretische Eigenschaften von Lösungen partieller Differentialgleichungen"  ''Habilitationsschrift Techn. Univ. Graz''  (1988)</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  R. Heersink,  "Über Lösungsdarstellungen und funktionentheoretische Methoden bei elliptischen Differentialgleichungen"  ''Ber. Math. Statist. Sektion Forschungszentrum Graz'' , '''67'''  (1976)</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  R. Heersink,  "Zur Charakterisierung spezieller Lösungsdarstellungen für elliptische Gleichungen"  ''Österr. Akad. d. Wiss., Abt.II'' , '''192''' :  4–7  (1983)  pp. 267–293</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  M. Kracht,  E. Kreyszig,  "Methods of complex analysis in partial differential equations with applications" , Wiley  (1988)</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  E. Peschl,  "Les invariants differentiels non holomorphes et leur role dans la theorie de fonctions"  ''Rend. Sem. Mat. Messina'' , '''1'''  (1955)  pp. 100–108</td></tr><tr><td valign="top">[a9]</td> <td valign="top">  E. Peschl,  "Über die Verwendung von Differentialinvarianten bei gewissen Funktionenfamilien und die Übertragung einer darauf gegründeten Methode auf partielle Differentialgleichungen vom elliptischen Typus"  ''Ann. Acad. Sci. Fenn., Ser. A I Math.'' , '''336''' :  6  (1963)</td></tr></table>

Latest revision as of 10:00, 16 March 2023

A second-order elliptic partial differential equation in $\mathbf{R} ^ { 2 }$ (if $\epsilon = 1$) or in the open unit disc $D _ { 1 } \subset \mathbf{R} ^ { 2 }$ (if $\epsilon = - 1$), of the form

\begin{equation*} \Delta u + \epsilon \frac { 4 n ( n + 1 ) } { ( 1 + \epsilon ( x ^ { 2 } + y ^ { 2 } ) ) ^ { 2 } } u = 0, \end{equation*}

\begin{equation*} n \in {\bf N} , \epsilon = \pm 1. \end{equation*}

By using $z = x + i y$, $\bar{z} = x - i y$,

\begin{equation*} \frac { \partial } { \partial z } = \frac { 1 } { 2 } \left( \frac { \partial } { \partial x } - i \frac { \partial } { \partial y } \right) , \frac { \partial } { \partial \overline{z} } = \frac { 1 } { 2 } \left( \frac { \partial } { \partial x } + i \frac { \partial } { \partial y } \right), \end{equation*}

$w ( z ) = u ( x , y )$, one arrives at the standard notation

\begin{equation} \tag{a1} \frac { \partial ^ { 2 } w } { \partial z \partial \overline{z}} + \epsilon \frac { n ( n + 1 ) } { ( 1 + \epsilon z \overline{z} ) ^ { 2 } } w = 0, \end{equation}

\begin{equation*} n \in {\bf N} , \epsilon = \pm 1. \end{equation*}

This equation attracted interest from the differential-geometric viewpoint from the times of G. Darboux and H.A. Schwarz. It played an important role in the investigation of differential invariants for certain families of complex functions by E. Peschl ([a8], [a9]) and has been treated systematically by a number of authors since then. In particular, the papers of K.W. Bauer [a2], [a1] have stimulated further investigations and have been significant. Summaries of the results, including the essential contributions of S. Ruscheweyh, M. Kracht and E. Kreyszig can be found in [a3] and in [a7].

For $\epsilon = + 1$, equation (a1) transforms by stereographic projection into the equation of spherical harmonics

\begin{equation*} \frac { 1 } { \operatorname { sin } ^ { 2 } \vartheta } . \frac { \partial ^ { 2 } Y } { \partial \varphi ^ { 2 } } + \frac { 1 } { \operatorname { sin } \vartheta } . \frac { \partial } { \partial \vartheta } \left( \operatorname { sin } \vartheta . \frac { \partial Y } { \partial \vartheta } \right) + \end{equation*}

\begin{equation*} + n ( n + 1 ) Y = 0. \end{equation*}

Separation of variables then readily shows the connection of (a1) with the equations of mathematical physics (cf. also Mathematical physics, equations of), to wit, the $3$-dimensional potential equation

\begin{equation*} \Delta _ { 3 } U = 0 \end{equation*}

and the $3$-dimensional wave equation

\begin{equation*} \Delta _ { 3 } U = \frac { \partial ^ { 2 } U } { \partial t ^ { 2 } }. \end{equation*}

Analogously, for $\epsilon = - 1$ equation (a1) is connected to the equation of hyperboloid functions and to

\begin{equation*} \Delta_ { 2 } U = \frac { \partial ^ { 2 } U } { \partial t ^ { 2 } }, \end{equation*}

the $2$-dimensional wave equation (see [a2], [a1]). Moreover, (a1) is related to the generalized axially symmetric potential theory, the theory of poly-analytic and poly-harmonic functions, the theory of Eisenstein series, etc. (see [a7]).

Motivated by these relations, K.W. Bauer has given detailed representations of the solutions of (a1) by using differential operators:

\begin{equation*} w ( z ) = \sum _ { k = 0 } ^ { n } a _ { k } ( z ) . f ^ { ( k ) } ( z ) + \sum _ { k = 0 } ^ { n } b _ { k } ( z ) . \overline { g ^ { ( k ) } ( z ) }, \end{equation*}

where $f$ and $g$ may be arbitrary holomorphic functions (cf. also Holomorphic function). This kind of representation of solutions can be transferred to certain more general equations than (a1), similar to the integral representations of S. Bergman and I.N. Vekua, and facilitates the creation of function theories associated with the classical theory of holomorphic functions (see [a2], [a1], [a3], [a4], [a5], [a6], [a7]). This allows the treatment of classical problems (e.g. the Riemann–Hilbert problem, the Cauchy–Kovalevskaya problem, cf. also Cauchy–Kovalevskaya theorem, etc.) for these classes of functions.

References

[a1] K.W. Bauer, "Über die Lösungen der elliptischen Differentialgleichung $( 1 \pm z \bar{z} ) ^ { 2 } w _ { z \bar{z} } + \lambda w = 0$ I–II" J. Reine Angew. Math. , 221 (1966) pp. 48–84; 176–196
[a2] K.W. Bauer, "Über eine der Differentialgleichung $( 1 \pm z \bar{z} ) ^ { 2 } w _ { z \bar{z} } \pm n (n+1) w = 0$ zugeordnete Funktionentheorie" Bonner Math. Schriften , 23 (1965)
[a3] K.W. Bauer, S. Ruscheweyh, "Differential operators for partial differential equations and function theoretic applications" , Lecture Notes Math. , 791 , Springer (1980)
[a4] P. Berglez, "Darstellung und funktionentheoretische Eigenschaften von Lösungen partieller Differentialgleichungen" Habilitationsschrift Techn. Univ. Graz (1988)
[a5] R. Heersink, "Über Lösungsdarstellungen und funktionentheoretische Methoden bei elliptischen Differentialgleichungen" Ber. Math. Statist. Sektion Forschungszentrum Graz , 67 (1976)
[a6] R. Heersink, "Zur Charakterisierung spezieller Lösungsdarstellungen für elliptische Gleichungen" Österr. Akad. d. Wiss., Abt.II , 192 : 4–7 (1983) pp. 267–293
[a7] M. Kracht, E. Kreyszig, "Methods of complex analysis in partial differential equations with applications" , Wiley (1988)
[a8] E. Peschl, "Les invariants differentiels non holomorphes et leur role dans la theorie de fonctions" Rend. Sem. Mat. Messina , 1 (1955) pp. 100–108
[a9] E. Peschl, "Über die Verwendung von Differentialinvarianten bei gewissen Funktionenfamilien und die Übertragung einer darauf gegründeten Methode auf partielle Differentialgleichungen vom elliptischen Typus" Ann. Acad. Sci. Fenn., Ser. A I Math. , 336 : 6 (1963)
How to Cite This Entry:
Bauer-Peschl equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bauer-Peschl_equation&oldid=16840
This article was adapted from an original article by R. Heersink (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article