# Bateman function

* $ k $-*
function

The function

$$ \tag{1 } k _ \nu (x) = \ \frac{2} \pi \int\limits _ { 0 } ^ { \pi /2 } \cos (x \mathop{\rm tg} \theta - \nu \theta ) d \theta , $$

where $ x $ and $ \nu $ are real numbers. The function was defined by H. Bateman [1]. The Bateman function may be expressed in the form of a confluent hypergeometric function of the second kind $ \Psi (a, b, x) $:

$$ \tag{2 } \Gamma ( \nu +1)k _ {2 \nu } (x) = \ e ^ {-x} \Psi ( - \nu , 0 ; 2 x) ,\ x > 0 . $$

The relation (2) is conveniently taken as the definition of the Bateman function in the complex plane with the cut $ (- \infty , 0] $. The following relations are valid: for case (1)

$$ k _ \nu (-x) = k _ {- \nu } (x), $$

for case (2)

$$ k _ {2 \nu } (- \xi \pm i0) = \ k _ {- 2 \nu } ( \xi )-e ^ {\pm \nu \pi i } e ^ \xi \Phi (- \nu , 0; - 2 \xi ), $$

where $ \xi > 0 $, and $ \Phi (a, b; x) $ is a confluent hypergeometric function of the first kind.

#### References

[1] | H. Bateman, "The $k$-function, a particular case of the confluent hypergeometric function" Trans. Amer. Math. Soc. , 33 (1931) pp. 817–831 |

[2] | H. Bateman (ed.) A. Erdélyi (ed.) , Higher transcendental functions , 1. The gamma function. The hypergeometric functions. Legendre functions , McGraw-Hill (1953) |

**How to Cite This Entry:**

Bateman function.

*Encyclopedia of Mathematics.*URL: http://encyclopediaofmath.org/index.php?title=Bateman_function&oldid=53287