Namespaces
Variants
Actions

Difference between revisions of "Asymptotic expansion"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(gather refs)
 
(One intermediate revision by one other user not shown)
Line 30: Line 30:
  
 
where  $  \{ \phi _ {n} (x) \} $
 
where  $  \{ \phi _ {n} (x) \} $
is some given [[Asymptotic sequence|asymptotic sequence]] as  $  x \rightarrow x _ {0} $.  
+
is some given [[asymptotic sequence]] as  $  x \rightarrow x _ {0} $.  
 
In such a case one also has
 
In such a case one also has
  
Line 62: Line 62:
 
$$
 
$$
  
are known as asymptotic series. As a rule such series are divergent. [[Asymptotic power series|Asymptotic power series]] are the ones most commonly employed; the corresponding asymptotic expansions are asymptotic expansions in the sense of Poincaré.
+
are known as asymptotic series. As a rule such series are divergent. [[Asymptotic power series]] are the ones most commonly employed; the corresponding asymptotic expansions are asymptotic expansions in the sense of Poincaré.
  
 
The following is an example of an asymptotic expansion in the sense of Erdélyi:
 
The following is an example of an asymptotic expansion in the sense of Erdélyi:
Line 78: Line 78:
 
  \right )
 
  \right )
 
\sum _ {n=0 } ^  \infty   
 
\sum _ {n=0 } ^  \infty   
( -1 )  ^ {n} a _ {2n} x  ^ {-2n\right} . -
+
( -1 )  ^ {n} a _ {2n} x  ^ {-2n}\right. -
 
$$
 
$$
  
Line 85: Line 85:
 
\sin \left ( x -  
 
\sin \left ( x -  
 
\frac{\pi \nu }{2}
 
\frac{\pi \nu }{2}
  - \pi
+
  - \frac{\pi}{4} \right ) \sum _ {n=0 } ^  \infty  ( -1 )  ^ {n} a _ {2n+1} x  ^ {-2n-1} \right ]
over {4} \right ) \sum _ {n=0 } ^  \infty  ( -1 )  ^ {n} a _ {2n+1} x  ^ {-2n-1} \right ]
 
 
$$
 
$$
  
Line 102: Line 101:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Poincaré,  "Sur les intégrales irrégulières des équations linéaires"  ''Acta Math.'' , '''8'''  (1886)  pp. 295–344</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E.T. Whittaker,  G.N. Watson,  "A course of modern analysis" , Cambridge Univ. Press  (1952)  pp. Chapt. 2</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A. Erdélyi,  M. Wyman,  "The asymptotic evaluation of certain integrals"  ''Arch. Rational Mech. Anal.'' , '''14'''  (1963)  pp. 217–260</TD></TR></table>
+
<table>
 
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  H. Poincaré,  "Sur les intégrales irrégulières des équations linéaires"  ''Acta Math.'' , '''8'''  (1886)  pp. 295–344</TD></TR>
====Comments====
+
<TR><TD valign="top">[2]</TD> <TD valign="top">  E.T. Whittaker,  G.N. Watson,  "A course of modern analysis" , Cambridge Univ. Press  (1952)  pp. Chapt. 2</TD></TR>
 
+
<TR><TD valign="top">[3]</TD> <TD valign="top">  A. Erdélyi,  M. Wyman,  "The asymptotic evaluation of certain integrals"  ''Arch. Rational Mech. Anal.'' , '''14'''  (1963)  pp. 217–260</TD></TR>
====References====
+
<TR><TD valign="top">[a1]</TD> <TD valign="top">  N.G. de Bruijn,  "Asymptotic methods in analysis" , Dover, reprint  (1981)</TD></TR>
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N.G. de Bruijn,  "Asymptotic methods in analysis" , Dover, reprint  (1981)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Erdélyi,  "Asymptotic expansions" , Dover, reprint  (1956)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  E.T. Copson,  "Asymptotic expansions" , Cambridge Univ. Press  (1965)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  J.P. Murray,  "Asymptotic analysis" , Springer  (1984)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  N. Bleistein,  R.A. Handelsman,  "Asymptotic expansions of integrals" , Dover, reprint  (1986)  pp. Chapts. 1, 3, 5</TD></TR></table>
+
<TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Erdélyi,  "Asymptotic expansions" , Dover, reprint  (1956)</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  E.T. Copson,  "Asymptotic expansions" , Cambridge Univ. Press  (1965)</TD></TR>
 +
<TR><TD valign="top">[a4]</TD> <TD valign="top">  J.P. Murray,  "Asymptotic analysis" , Springer  (1984)</TD></TR>
 +
<TR><TD valign="top">[a5]</TD> <TD valign="top">  N. Bleistein,  R.A. Handelsman,  "Asymptotic expansions of integrals" , Dover, reprint  (1986)  pp. Chapts. 1, 3, 5</TD></TR>
 +
</table>

Latest revision as of 19:29, 13 April 2024


of a function $ f(x) $

A series

$$ \sum _ {n=0 } ^ \infty \psi _ {n} (x) $$

such that for any integer $ N \geq 0 $ one has

$$ \tag{1 } f (x) = \sum _ {n=0 } ^ { N } \psi _ {n} (x) + o ( \phi _ {N} (x) ) \ \ (x \rightarrow x _ {0} ), $$

where $ \{ \phi _ {n} (x) \} $ is some given asymptotic sequence as $ x \rightarrow x _ {0} $. In such a case one also has

$$ \tag{2 } f (x) \sim \sum _ {n=0 } ^ \infty \psi _ {n} (x),\ \ \{ \phi _ {n} (x) \} ,\ \ ( x \rightarrow x _ {0} ). $$

The sequence $ \{ \phi _ {n} (x) \} $ is omitted from formula (2) if it is clear from the context which sequence is meant.

The asymptotic expansion (2) is called an asymptotic expansion in the sense of Erdélyi [3]. An expansion of the type

$$ \tag{3 } f (x) \sim \sum _ {n=0 } ^ \infty a _ {n} \phi _ {n} (x) \ \ ( x \rightarrow x _ {0} ), $$

where $ a _ {n} $ are constants, is called an asymptotic expansion in the sense of Poincaré. If the asymptotic sequence of functions $ \{ \phi _ {n} (x) \} $ is given, the asymptotic expansion (3), contrary to the expansion (2), is uniquely defined by the function $ f(x) $ itself. If (1) is valid for a finite number of values $ N = 0 \dots N _ {0} < \infty $, then (1) is called an asymptotic expansion up to $ o( \phi _ {N _ {0} } (x)) $. The series

$$ \sum _ {n=0 } ^ \infty \psi _ {n} (x),\ \ \sum _ {n=0 } ^ \infty a _ {n} \phi _ {n} (x) $$

are known as asymptotic series. As a rule such series are divergent. Asymptotic power series are the ones most commonly employed; the corresponding asymptotic expansions are asymptotic expansions in the sense of Poincaré.

The following is an example of an asymptotic expansion in the sense of Erdélyi:

$$ J _ \nu (x) \sim \ \sqrt { \frac{2}{\pi x } } \left [ \cos \left ( x - \frac{\pi \nu }{2} - \frac \pi {4} \right ) \sum _ {n=0 } ^ \infty ( -1 ) ^ {n} a _ {2n} x ^ {-2n}\right. - $$

$$ - \left . \sin \left ( x - \frac{\pi \nu }{2} - \frac{\pi}{4} \right ) \sum _ {n=0 } ^ \infty ( -1 ) ^ {n} a _ {2n+1} x ^ {-2n-1} \right ] $$

$ (x \rightarrow + \infty ) $, where $ J _ \nu (x) $ is the Bessel function, and

$$ a _ {n} = \frac{\Gamma ( \nu + n + 1 / 2 ) }{2 ^ {n} n! \Gamma ( \nu - n + 1 / 2 ) } . $$

The concepts of an asymptotic expansion of a function and of an asymptotic series were introduced by H. Poincaré [1] in the context of problems in celestial mechanics. Special cases of asymptotic expansions were discovered and utilized as early as the 18th century [2]. Asymptotic expansions play an important role in many problems in mathematics, mechanics and physics. This is because many problems do not admit exact solutions, but their solutions can be obtained as asymptotic approximations. Moreover, numerical methods are often disregarded if asymptotic approximations can be relatively easily found.

References

[1] H. Poincaré, "Sur les intégrales irrégulières des équations linéaires" Acta Math. , 8 (1886) pp. 295–344
[2] E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 2
[3] A. Erdélyi, M. Wyman, "The asymptotic evaluation of certain integrals" Arch. Rational Mech. Anal. , 14 (1963) pp. 217–260
[a1] N.G. de Bruijn, "Asymptotic methods in analysis" , Dover, reprint (1981)
[a2] A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956)
[a3] E.T. Copson, "Asymptotic expansions" , Cambridge Univ. Press (1965)
[a4] J.P. Murray, "Asymptotic analysis" , Springer (1984)
[a5] N. Bleistein, R.A. Handelsman, "Asymptotic expansions of integrals" , Dover, reprint (1986) pp. Chapts. 1, 3, 5
How to Cite This Entry:
Asymptotic expansion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Asymptotic_expansion&oldid=45238
This article was adapted from an original article by M.V. Fedoryuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article