Namespaces
Variants
Actions

Difference between revisions of "Associativity"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(Comments: on related properties)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
''law of associativity''
 
''law of associativity''
  
A property of an [[Algebraic operation|algebraic operation]]. For the addition and multiplication of numbers associativity is expressed by the following identities:
+
A property of an [[Algebraic operation|algebraic operation]]. For the addition and multiplication of numbers, associativity is expressed by the following identities:
 +
$$
 +
a+(b+c) = (a+b) + c\ \ \text{and}\ \ a(bc) = (ab)c\ .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013520/a0135201.png" /></td> </tr></table>
+
A general [[binary operation]] $\star$ is associative (or, which is the same thing, satisfies the law of associativity) if the identity
 +
$$
 +
a \star (b \star c) = (a \star b) \star c
 +
$$
 +
is valid in the given algebraic system. In a similar manner, associativity of an $n$-ary operation $\omega$ is defined by the identities
 +
$$
 +
(x_1 x_2 \ldots x_n)\omega x_{n+1} \ldots x_{2n-1} \omega = x_1 \ldots x_i (x_{i+1} \ldots x_{i+n})\omega x_{i+n+1} \ldots x_{i+2n-1} \omega
 +
$$
 +
for all $i=1,\ldots,n$.
  
A binary algebraic operation * is associative (or, which is the same thing, satisfies the law of associativity) if the identity
+
====Comments====
 +
A [[semi-group]] is a set equipped with an associative binary operation.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013520/a0135202.png" /></td> </tr></table>
+
Weaker properties related to associativity include [[power associativity]], the [[alternative identity]] and the [[flexible identity]].
  
is valid in the given algebraic system. In a similar manner, associativity of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013520/a0135203.png" />-ary operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013520/a0135204.png" /> is defined by the identities
+
====References====
 +
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  R.H. Bruck,  "A survey of binary systems" Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge. '''20''' Springer  (1958) {{ZBL|0081.01704}}</TD></TR>
 +
</table>
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013520/a0135205.png" /></td> </tr></table>
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013520/a0135206.png" /></td> </tr></table>
+
{{TEX|done}}
 
 
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013520/a0135207.png" />.
 

Latest revision as of 20:52, 7 January 2016

law of associativity

A property of an algebraic operation. For the addition and multiplication of numbers, associativity is expressed by the following identities: $$ a+(b+c) = (a+b) + c\ \ \text{and}\ \ a(bc) = (ab)c\ . $$

A general binary operation $\star$ is associative (or, which is the same thing, satisfies the law of associativity) if the identity $$ a \star (b \star c) = (a \star b) \star c $$ is valid in the given algebraic system. In a similar manner, associativity of an $n$-ary operation $\omega$ is defined by the identities $$ (x_1 x_2 \ldots x_n)\omega x_{n+1} \ldots x_{2n-1} \omega = x_1 \ldots x_i (x_{i+1} \ldots x_{i+n})\omega x_{i+n+1} \ldots x_{i+2n-1} \omega $$ for all $i=1,\ldots,n$.

Comments

A semi-group is a set equipped with an associative binary operation.

Weaker properties related to associativity include power associativity, the alternative identity and the flexible identity.

References

[a1] R.H. Bruck, "A survey of binary systems" Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge. 20 Springer (1958) Zbl 0081.01704
How to Cite This Entry:
Associativity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Associativity&oldid=17122
This article was adapted from an original article by O.A. IvanovaD.M. Smirnov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article