Namespaces
Variants
Actions

Bernstein algebra

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Around 1900, S.N. Bernstein (cf. [a3], [a4], [a5]) worked on an important problem concerning the laws of formal genetics. This problem is known today as the Bernstein problem. Following Yu.I. Lyubich (cf. [a10]), this problem can be expressed as follows. The state of a population in a given generation is described by a vector in $ \mathbf R ^ {n} $ whose coordinates satisfy $ x _ {i} \geq 0 $( $ i = 1 \dots n $) and $ \sum _ {i = 1 } ^ {n} x _ {i} = 1 $. The set $ S $ of all states is a simplex in $ \mathbf R ^ {n} $ and the vertices $ e _ {i} $( $ i = 1 \dots n $) of $ S $ are the different types of individuals in the population. If $ \gamma _ {ijk } $ is the probability that an individual $ e _ {k} $ appears in the next generation from parents of types $ e _ {i} $ and $ e _ {j} $, then $ \sum _ {k = 1 } ^ {n} \gamma _ {ijk } = 1 $( $ i,j = 1 \dots n $) and $ \gamma _ {ijk } = \gamma _ {jik } $( $ i,j,k = 1 \dots n $). In absence of selection and under random hypothesis, the state of the population in the next generation can be written, in terms of coordinates, as $ x _ {k} ^ \prime = \sum _ {i,j = 1 } ^ {n} \gamma _ {ijk } x _ {i} x _ {j} $( $ k = 1 \dots n $). These relations define a quadratic operator $ V : S \rightarrow S $ called the evolutionary quadratic operator. The Bernstein stationarity principle says that $ V ^ {2} = V $ and the Bernstein problem aims at describing all quadratic operators satisfying this principle. Bernstein solved his problem for $ n = 3 $ and much progress was achieved recently (cf. [a6], [a8]) in this direction. The Bernstein problem can be translated in terms of algebra structure. In fact, over $ \mathbf R ^ {n} $ an algebra structure can be defined via the operator $ V $ by

$$ xy = { \frac{1}{2} } ( V ( x + y ) - V ( x ) - V ( y ) ) $$

for all $ x, y \in \mathbf R ^ {n} $, and if $ \omega : {\mathbf R ^ {n} } \rightarrow \mathbf R $ is the mapping defined by $ x = ( x _ {1} \dots x _ {n} ) \mapsto \sum _ {i = 1 } ^ {n} x _ {i} $, then $ V ^ {2} = V $ if and only if $ ( x ^ {2} ) ^ {2} = \omega ( x ) ^ {2} x ^ {2} $ for all $ x \in \mathbf R ^ {n} $. Moreover, $ \omega ( xy ) = \omega ( x ) \omega ( y ) $ for all $ x, y \in \mathbf R ^ {n} $. Of course, to define this multiplication over the whole space $ \mathbf R ^ {n} $ starting from the simplex $ S $, one has to make convenient extensions of this multiplication by bilinearity. Now, in general, if $ K $ is a (commutative) field and $ A $ is a commutative $ K $- algebra, then a weighted algebra $ ( A, \omega ) $ over $ K $ is said to be a Bernstein algebra if $ ( x ^ {2} ) ^ {2} = \omega ( x ) ^ {2} x ^ {2} $ for all $ x \in A $( cf. [a2]). In recent years (1990s), the theory of Bernstein algebras has been substantially improved. V.M. Abraham (cf. [a1]) suggests the construction of a generalized Bernstein algebra. In this perspective, for an element $ x \in A $, where $ ( A, \omega ) $ is a weighted algebra, the plenary powers $ x ^ {[ m ] } $ of $ x $ are defined by $ x ^ {[ 1 ] } = x $ and $ x ^ {[ m -1 ] } x ^ {[ m -1 ] } = x ^ {[ m ] } $ for all integer $ m \geq 2 $. The plenary powers can be interpreted by saying that they represent random mating between discrete non-overlapping generations. $ ( A, \omega ) $ is called an $ n $ th order Bernstein algebra if $ x ^ {[ n + 2 ] } = \omega ( x ) ^ {2 ^ {n} } x ^ {[ n + 1 ] } $ for all $ x \in A $, where $ n \geq 1 $ is the smallest such integer (cf. [a11]). Second-order Bernstein algebras are simply called Bernstein algebras and first-order Bernstein algebras are also called gametic diploid algebras. The interpretation of the equation $ x ^ {[ n + 2 ] } = x ^ {[ n + 1 ] } $( $ x \in A $ such that $ \omega ( x ) = 1 $) is that equilibrium in the population is reached after exactly $ n $ generations of intermixing. For genetic properties of Bernstein algebras, see [a7] and [a12].

See also Genetic algebra; Baric algebra.

References

[a1] V.M. Abraham, "Linearising quadratic transformations in genetic algebras" Thesis, Univ. London (1975)
[a2] M.T. Alcalde, C. Burgueno, A. Labra, A. Micali, "Sur les algèbres de Bernstein" Proc. London Math. Soc. (3) , 58 (1989) pp. 51–68
[a3] S.N. Bernstein, "Principe de stationarité et généralisation de la loi de Mendel" C.R. Acad. Sci. Paris , 177 (1923) pp. 528–531
[a4] S.N. Bernstein, "Démonstration mathématique de la loi d'hérédité de Mendel" C.R. Acad. Sci. Paris , 177 (1923) pp. 581–584
[a5] S.N. Bernstein, "Solution of a mathematical problem connected with the theory of heredity" Ann. Math. Stat. , 13 (1942) pp. 53–61
[a6] S. González, J.C. Gutiérrez, C. Martínez, "The Bernstein problem in dimension $5$" J. Algebra , 177 (1995) pp. 676–697
[a7] A.N. Griskhov, "On the genetic property of Bernstein algebras" Soviet Math. Dokl. , 35 (1987) pp. 489–492 (In Russian)
[a8] J.C. Gutiérrez, "The Bernstein problem for type $(n-2,2)$" J. Algebra , 181 (1996) pp. 613–627
[a9] P. Holgate, "Genetic algebras satisfying Bernstein's stationarity principle" J. London Math. Soc. (2) , 9 (1975) pp. 613–623
[a10] Yu.I. Lyubich, "Mathematical structures in population genetics" Biomathematics , 22 (1992)
[a11] C. Mallol, A. Micali, M. Ouattara, "Sur les algèbres de Bernstein IV" Linear Alg. & Its Appl. , 158 (1991) pp. 1–26
[a12] A. Micali, M. Ouattara, "Structure des algèbres de Bernstein" Linear Alg. & Its Appl. , 218 (1995) pp. 77–88
How to Cite This Entry:
Bernstein algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bernstein_algebra&oldid=53293
This article was adapted from an original article by A. Micali (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article