Group velocity
A quantity describing the rate of propagation of a wave process in dispersing media. Let the wave process be described by the wave equation with variable coefficients:
$$ \frac{1}{c ^ {2} ( z) } u _ {tt} - u _ {xx} - u _ {zz} = 0, $$
$$ 0 \leq z \langle \infty ,\ - \infty < x < \infty ,\ c ( z) \rangle 0. $$
The solutions sought satisfy the conditions
$$ \left . u \right | _ {z = 0 } = 0,\ \ u _ {z \rightarrow \infty } \rightarrow 0 , $$
and have the form
$$ u = \ e ^ {i \omega ( k) t - ikx } v ( z). $$
The function $ v ( z) $ should be a non-zero solution of the one-dimensional boundary value problem
$$ v ^ {\prime\prime} + \left ( k ^ {2} - \frac{\omega ^ {2} }{c ^ {2} ( z) } \right ) v = 0; \ \ \left . v \right | _ {z = 0 } = 0; \ \ v _ {z \rightarrow \infty } \rightarrow 0. $$
If, in a certain range of variation of $ k $, there exists a finite number of $ \omega _ {j} ( k), $ $ k = 1, 2 \dots $ for which this problem has a non-zero solution $ v _ {j} $, then the quantities $ V = \omega _ {j} ( k)/k $ and $ U = d \omega _ {j} /d k $ are said to be, respectively, the phase and group velocities of the wave
$$ u _ {j} = \ e ^ {i \omega ( k) t - ikx } v _ {j} ( z). $$
The two velocities are related by the Rayleigh formula:
$$ U = V - \frac{\lambda dV }{d \lambda } , $$
where $ \lambda $ is the wave-length.
References
[1] | L.I. Mandel'shtam, Complete works , 5 , Leningrad (1950) pp. 315–319; 419–425; 439–467 (In Russian) |
[2] | G.S. Gorelik, "Oscillations and waves" , Moscow-Leningrad (1950) (In Russian) |
[a1] | L. Brillouin, "Les tenseur en mécanique et en élasticité" , Masson (1949) |
Group velocity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Group_velocity&oldid=55671