Namespaces
Variants
Actions

Meijer transform

From Encyclopedia of Mathematics
Revision as of 13:26, 13 January 2024 by Chapoton (talk | contribs) (latex details)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search


The integral transform

where W _ {\mu , \nu } ( x) is the Whittaker function (cf. Whittaker functions). The corresponding inversion formula is

f( t) = \lim\limits _ {\lambda \rightarrow + \infty } \frac{1}{2 \pi i } \frac{\Gamma ( 1- \mu + \nu ) }{\Gamma ( 1+ 2 \nu ) } \times

\times \int\limits _ {\beta - i \lambda } ^ { \beta + i \lambda } e^ {xt/2} ( xt) ^ {\mu - 1/2 } W _ {\mu - 1/2, \nu } ( xt) F( x) dx.

For \mu = \pm \nu the Meijer transform becomes the Laplace transform; for \mu = - 1/2 it becomes the K _ \nu - transform

F( x) = \frac{1}{\sqrt \pi } \int\limits _ { 0 } ^ \infty e ^ {-} xt/2 ( xt) ^ {1/2} K _ \nu \left ( \frac{xt}{2} \right ) f( t) dt,

where K _ \nu ( x) is the Macdonald function.

The Varma transform

F( x) = \int\limits _ { 0 } ^ \infty ( xt) ^ {\nu - 1/2 } e ^ {-} xt/2 W _ {\mu , \nu } ( xt) f( t) dt

reduces to a Meijer transform.

The Meijer K - transform (or the Meijer–Bessel transform) is the integral transform

F( x) = \sqrt { \frac{2} \pi } \int\limits _ { 0 } ^ \infty K _ \nu ( xt) \sqrt xt f( t) dt.

If the function f is locally integrable on ( 0, \infty ) , has bounded variation in a neighbourhood of the point t = t _ {0} > 0 , and if the integral

\int\limits _ { 0 } ^ \infty e ^ {- \beta t } | f( t) | dt,\ \ \beta > \alpha \geq 0,

converges, then the following inversion formula is valid:

\frac{f( t _ {0} + 0) + f( t _ {0} - 0) }{2\ } =

= \ \lim\limits _ {\lambda \rightarrow \infty } \frac{1}{i \sqrt {2 \pi } } \int\limits _ {\beta - i \lambda } ^ { \beta + i \lambda } I _ \nu ( t _ {0} x)( t _ {0} x) ^ {1/2} F( x) dx.

For \nu = \pm 1/2 the Meijer K - transform turns into the Laplace transform.

The Meijer transform and Meijer K - transform were introduced by C.S. Meijer in [1] and, respectively, .

References

[1] C.S. Meijer, "Eine neue Erweiterung der Laplace Transformation I" Proc. Koninkl. Ned. Akad. Wet. , 44 (1941) pp. 727–737
[2a] C.S. Meijer, "Ueber eine neue Erweiterung der Laplace Transformation I" Proc. Koninkl. Ned. Akad. Wet. , 43 (1940) pp. 599–608
[2b] C.S. Meijer, "Ueber eine neue Erweiterung der Laplace Transformation II" Proc. Koninkl. Ned. Akad. Wet. , 43 (1940) pp. 702–711
[3] Y.A. Brychkov, A.P. Prudnikov, "Integral transforms of generalized functions" , Gordon & Breach (1989) (Translated from Russian)
[4] V.A. Ditkin, A.P. Prudnikov, "Operational calculus" Progress in Math. , 1 (1968) pp. 1–75 Itogi Nauk. Mat. Anal. 1966 (1967) pp. 7–82
How to Cite This Entry:
Meijer transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Meijer_transform&oldid=55041
This article was adapted from an original article by Yu.A. BrychkovA.P. Prudnikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article