Laguerre transform
The integral transform
where L _ {n} ( x) is the Laguerre polynomial (cf. Laguerre polynomials) of degree n . The inversion formula is
T ^ {-1} \{ f ( n) \} = F ( x) = \ \sum _ { n= 0} ^ \infty f ( n) L _ {n} ( x) ,\ \ 0 < x < \infty ,
if the series converges. If F is continuous, F ^ { \prime } is piecewise continuous on [ 0 , \infty ) and F ( x) = O ( e ^ {ax} ) , x \rightarrow \infty , a < 1 , then
T \left \{ \frac{d F ( x) }{dx} \right \} = \ \sum _ { k=0} ^ { n } f ( k) - F ( 0) ,\ \ n = 0 , 1 \dots
T \left \{ x \frac{d F ( x) }{dx} \right \} = - ( n + 1 ) f ( n + 1 ) + n f ( n) ,\ n = 0 , 1 , \dots.
If F and F ^ { \prime } are continuous, F ^ { \prime\prime } is piecewise continuous on [ 0 , \infty ) and | F ( x) | + | F ^ { \prime } ( x) | = O ( e ^ {ax} ) , x \rightarrow \infty , a < 1 , then
T \left \{ e ^ {x} \frac{d}{dx} \left [ x e ^ {-x} \frac{d F ( x) }{dx} \right ] \right \} = - n f ( n) ,\ n = 0 , 1 , . . ..
If F is piecewise continuous on [ 0 , \infty ) and F ( x) = O ( e ^ {ax} ) , x \rightarrow \infty , a < 1 , then for
G ( x) = \int\limits _ { 0 } ^ { x } F ( t) d t ,
g ( n) = T \left \{ \int\limits _ { 0 } ^ { x } F ( t) d t \right \} = f ( n) - f ( n - 1 ) ,\ n = 1 , 2 \dots
and for n = 0 ,
g ( 0) = f ( 0) .
Suppose that F and G are piecewise continuous on [ 0 , \infty ) and that
| F ( x) | + | G ( x) | = O ( e ^ {ax} ) ,\ \ x \rightarrow \infty ,\ a < \frac{1}{2} ,
T \{ F \} = f ( n) ,\ T \{ G \} = g ( n) .
Then
T ^ {-1} \{ f ( n) g ( n) \} =
= \frac{1} \pi \int\limits _ { 0 } ^ \infty e ^ {-t} F ( t) \int\limits _ { 0 } ^ \pi e ^ {\sqrt {xt } \cos \theta } \cos ( \sqrt {xt } \sin \theta ) \times
\times G ( x + t - 2 \sqrt {xt } \cos \theta ) d \theta d t .
The generalized Laguerre transform is
f _ \alpha ( n) = T _ \alpha \{ F ( x) \} =
= \ \int\limits _ { 0 } ^ \infty e ^ {- x} x ^ \alpha L _ {n} ^ \alpha ( x) F ( x) d x ,\ n = 0 , 1 \dots
where L _ {n} ^ \alpha ( x) is the generalized Laguerre polynomial (see [4]).
References
[1] | A.G. Zemanian, "Generalized integral transformations" , Interscience (1968) |
[2] | J. McCully, "The Laguerre transform" SIAM Rev. , 2 : 3 (1960) pp. 185–191 |
[3] | L. Debnath, "On Laguerre transform" Bull. Calcutta Math. Soc. , 52 : 2 (1960) pp. 69–77 |
[4] | Yu.A. Brychkov, A.P. Prudnikov, "Operational calculus" Progress in Math. , 1 (1968) pp. 1–74 Itogi Nauk. Mat. Anal. 1966 (1967) pp. 7–82 |
Laguerre transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Laguerre_transform&oldid=54843