Namespaces
Variants
Actions

Chasles theorem

From Encyclopedia of Mathematics
Revision as of 14:01, 30 April 2023 by Chapoton (talk | contribs) (gather refs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

If $A,B,C$ are three arbitrary points on a straight line, then $\overline{AB}+\overline{BC}=\overline{AC}$, where $\overline{AB},\overline{BC},\overline{AC}$ are the lengths of the directed line segments. Chasles' theorem can be generalized to the case of the surface of oriented triangles and the volumes of oriented tetrahedra (see ).

A motion of the first kind (orientation-preserving), different from a rotation and a translation, is the product of a translation and a rotation the axis of which is parallel to the direction of the translation (a so-called screwing motion). The theorem was proved by M. Chasles in 1830.

Comments

Any book on linear algebra and analytic geometry can serve as a reference, since both theorems are easy exercises. Another result that also is called Chasles' theorem can be found in [a1]: If the polars of the vertices of a triangle (cf. Polar) do not coincide with the respectively opposite sides, then they meet these sides in three collinear points.

References

[1] P.S. Modenov, "Analytic geometry" , Moscow (1969) (In Russian)
[a1] H.S.M. Coxeter, "Projective geometry" , Blaisdell (1964)
How to Cite This Entry:
Chasles theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Chasles_theorem&oldid=53885
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article