Point estimator
A statistical estimator whose values are points in the set of values of the quantity to be estimated.
Suppose that in the realization of the random vector X = ( X _ {1} \dots X _ {n} ) ^ {T} , taking values in a sample space ( \mathfrak X , {\mathcal B} , {\mathsf P} _ \theta ) , \theta = ( \theta _ {1} \dots \theta _ {k} ) ^ {T} \in \Theta \subset \mathbf R ^ {k} , the unknown parameter \theta ( or some function g ( \theta ) ) is to be estimated. Then any statistic T _ {n} = T _ {n} ( X) producing a mapping of the set \mathfrak X into \Theta ( or into the set of values of g ( \theta ) ) is called a point estimator of \theta ( or of the function g ( \theta ) to be estimated). Important characteristics of a point estimator T _ {n} are its mathematical expectation
{\mathsf E} _ \theta \{ T _ {n} \} = \ \int\limits _ {\mathfrak X } T _ {n} ( x) d {\mathsf P} _ \theta ( x)
and the covariance matrix
{\mathsf E} _ \theta \{ ( T _ {n} - {\mathsf E} \{ T _ {n} \} ) ( T _ {n} - {\mathsf E} \{ T _ {n} \} ) ^ {T} \} .
The vector d ( X) = T _ {n} ( X) - g ( \theta ) is called the error vector of the point estimator T _ {n} . If
b ( \theta ) = \ {\mathsf E} _ \theta \{ d ( X) \} = \ {\mathsf E} _ \theta \{ T _ {n} \} - g ( \theta )
is the zero vector for all \theta \in \Theta , then one says that T _ {n} is an unbiased estimator of g ( \theta ) or that T _ {n} is free of systematic errors; otherwise, T _ {n} is said to be biased, and the vector b ( \theta ) is called the bias or systematic error of the point estimator. The quality of a point estimator can be defined by means of the risk function (cf. Risk of a statistical procedure).
References
[1] | H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946) |
[2] | I.A. Ibragimov, R.Z. [R.Z. Khas'minskii] Has'minskii, "Statistical estimation: asymptotic theory" , Springer (1981) (Translated from Russian) |
Comments
References
[a1] | E.L. Lehmann, "Theory of point estimation" , Wiley (1983) |
Point estimator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Point_estimator&oldid=48211