Mayer problem
One of the fundamental problems in the calculus of variations (cf. Variational calculus) on a conditional extremum. The Mayer problem is the following: Find a minimum of the functional
$$ J ( y) = g ( x _ {1} , y ( x _ {1} ) , x _ {2} , y ( x _ {2} ) ) ,\ \ g: \mathbf R \times \mathbf R ^ {n} \times \mathbf R \times \mathbf R ^ {n} \rightarrow \mathbf R , $$
in the presence of differential constraints of the type
$$ \phi ( x , y , y ^ \prime ) = 0 ,\ \ \phi : \mathbf R \times \mathbf R ^ {n} \times \mathbf R ^ {n} \rightarrow \mathbf R ^ {m} ,\ \ m < n , $$
and boundary conditions
$$ \psi ( x _ {1} , y ( x _ {1} ) , x _ {2} , y ( x _ {2} ) ) = 0 ,\ \ \psi : \mathbf R \times \mathbf R ^ {n} \times \mathbf R \times \mathbf R ^ {n} \rightarrow \ \mathbf R ^ {p} , $$
$$ p < 2 n + 2 . $$
For details see Bolza problem.
The Mayer problem is named after A. Mayer, who studied necessary conditions for its solution (at the end of the 19th century).
Mayer problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mayer_problem&oldid=47810