Lambert summation method
2020 Mathematics Subject Classification: Primary: 40C [MSN][ZBL]
A summation method for summing series of complex numbers which assigns a sum to certain divergent series: it is regular in that it assigns the sum in the usual sense to any convergent series (an Abelian theorem). The series $$ \sum_{n=1}^\infty a_n $$ is summable by Lambert's method to the number $A$, written ${} = A \ \mathrm{(L)}$ if $$ \lim_{y \searrow 0} F(y) = A $$ where $F(y) is a [[Lambert series]] in $\exp(-y)$: '"`UNIQ-MathJax4-QINU`"' for $y>0$, if the series on the right-hand side converges. The method was proposed by J.H. Lambert [[#References|[1]]]. The summability of a series by the Cesàro summation method $(C,k)$ for some $k > -1$ (cf. [[Cesàro summation methods|Cesàro summation methods]]) to the sum $A$ implies its summability by the Lambert method to the same sum, and if the series is summable by the Lambert method to the sum $A$, then it is also summable by the [[Abel summation method|Abel summation method]] to the same sum. As an example, '"`UNIQ-MathJax5-QINU`"' where $\mu$ is the Möbius function. Hence if this series converges at all, it converges to zero.
References
[1] | J.H. Lambert, "Anlage zur Architektonik" , 2 , Riga (1771) |
[2] | G.H. Hardy, "Divergent series" , Clarendon Press (1949) |
[3] | Jacob Korevaar (2004). "Tauberian theory. A century of developments". Grundlehren der Mathematischen Wissenschaften 329. Springer-Verlag (2004). ISBN 3-540-21058-X. p. 18. |
[4] | Hugh L. Montgomery; Robert C. Vaughan (2007). "Multiplicative number theory I. Classical theory". Cambridge tracts in advanced mathematics 97. Cambridge: Cambridge Univ. Press (2007). ISBN 0-521-84903-9. pp. 159–160. |
[5] | Norbert Wiener "Tauberian theorems". Ann. Of Math. 33 (1932) 1–100. DOI 10.2307/1968102. JSTOR 1968102. |
Lambert summation method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lambert_summation_method&oldid=33029