# Lambert series

The series of functions $$\sum_{n=1}^\infty a_n \frac{x^n}{1-x^n} \ . \label{1}$$ It was considered by J.H. Lambert (see ) in connection with questions of convergence of power series. If the series $$\sum_{n=1}^\infty a_n$$ converges, then the Lambert series converges for all values of $x$ except $x = \pm 1$; otherwise it converges for those values of $x$ for which the series $$\sum_{n=1}^\infty a_n x^n$$ converges. The Lambert series is used in certain problems of number theory. Thus, for $|x| < 1$ the sum $\phi(x)$ of the series (1) can be represented as a power series: $$\sum_{n=1}^\infty A_n x^n$$ where $$A_n = \sum_{d | n} a_d$$ and the summation is over all divisors $d$ of $n$. In particular, if $a_n = 1$, then $A_n = \tau(n)$, the number of divisors of $n$; if $a_n = n$, then $A_n = \sigma(n)$, the sum of the divisors of $n$. The behaviour of $\phi(x)$ (with suitable $a_n$) as $x \nearrow 1$ is used, for example (see ), in the problem of Hardy and Ramanujan on obtaining an asymptotic formula for the number of "unbounded partitions" of a natural number.