Tikhonov space
From Encyclopedia of Mathematics
Revision as of 17:19, 17 October 2014 by Richard Pinch (talk | contribs) (Category:General topology)
A topological space in which every finite set is closed and such that for every closed set $P$ and any point $x$ not in $P$ there exists a continuous real-valued function $f$ on the whole space taking the value 0 at $x$ and the value 1 at every point of $P$. The class of Tikhonov spaces coincides with the class of completely-regular $T_1$-spaces (cf. Completely-regular space). In a Tikhonov space any two distinct points can be separated by disjoint neighbourhoods (in other words, the Hausdorff separation axiom is satisfied), but not every Tikhonov space is normal (cf. Normal space). A.N. Tikhonov (1929) characterized Tikhonov spaces as subspaces of compact Hausdorff spaces.
References
[1] | P.S. Aleksandrov, "Einführung in die Mengenlehre und die Theorie der reellen Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian) |
[2] | A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) (Translated from Russian) |
How to Cite This Entry:
Tikhonov space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tikhonov_space&oldid=51497
Tikhonov space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tikhonov_space&oldid=51497
This article was adapted from an original article by A.V. Arkhangel'skii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article