User:Ulf Rehmann/Table of automatically generated TeX code
Algebraic curve
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 1.(23.) | ![]()  | 
$g \leq \left\{ \begin{array} { l l } { \frac { ( n - 2 ) ^ { 2 } } { 4 } } & { \text { for even } n } \\ { \frac { ( n - 1 ) ( n - 3 ) } { 4 } } & { \text { for odd } n } \end{array} \right.$ | $$ g \leq \left\{ \begin{array} { l l } { \frac { ( n - 2 ) ^ { 2 } } { 4 } } & { \text { for even } n, } \\ { \frac { ( n - 1 ) ( n - 3 ) } { 4 } } & { \text { for odd } n, } \end{array} \right.$$ | conf 0.698
 a01145065.png (65)  | 
Algebraic geometry
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 2.(116.) | ![]()  | 
$\theta = \int _ { 0 } ^ { \lambda } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ | $$\theta = \int\limits _ { 0 } ^ { \lambda } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }, $$ | conf 0.997
 a01150014.png (14)  | 
| 3.(133.) | ![]()  | 
$\omega = 2 \int _ { 0 } ^ { 1 / c } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ | $$\omega = 2 \int\limits _ { 0 } ^ { 1 / c } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }, $$ | conf 0.973
 a01150021.png (21)  | 
| 4.(67.) | ![]()  | 
$\overline { w } = 2 \int _ { 0 } ^ { 1 / \varepsilon } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ | $$\widetilde{ w } = 2 \int\limits _ { 0 } ^ { 1 / \varepsilon } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } },$$ | conf 0.107
 a01150022.png (22)  | 
| 5.(105.) | ![]()  | 
$\theta ( v + \pi i r ) = \theta ( r ) , \quad \theta ( v + \alpha _ { j } ) = e ^ { L _ { j } ( v ) } \theta ( v )$ | $$\theta ( v + \pi i r ) = \theta ( r ) , \quad \theta ( v + \alpha _ { j } ) = e ^ { L _ { j } ( v ) } \theta ( v ), $$ | conf 0.775
 a01150044.png (44)  | 
| 6.(17.) | ![]()  | 
$\left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \equiv \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) ( \operatorname { mod } 7 )$ | $$\left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \equiv \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) ( \operatorname { mod } 7 ). $$ | conf 0.440
 a01150078.png (78)  | 
Algebraic surface
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 7.(144.) | ![]()  | 
$0 \rightarrow O _ { V } \rightarrow E _ { \alpha } \rightarrow T _ { V } \rightarrow 0$ | $$0 \rightarrow {\cal O} _ { V } \rightarrow E _ { \alpha } \rightarrow T _ { V } \rightarrow 0$$ | conf 0.981
 a011640132.png (132)  | 
| 8.(73.) | ![]()  | 
$M = \operatorname { dim } \operatorname { Im } ( H ^ { 1 } ( V , E _ { \alpha } ) \rightarrow H ^ { 1 } ( V , T _ { V } ) )$ | $$ M = \operatorname { dim } \operatorname { Im } ( H ^ { 1 } ( V , E _ { \alpha } ) \rightarrow H ^ { 1 } ( V , T _ { V } ) ). $$ | conf 0.997
 a011640137.png (137)  | 
| 9.(88.) | ![]()  | 
$\operatorname { dim } _ { k } H ^ { 2 } ( V , E _ { \alpha } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , T _ { V } )$ | $$ \operatorname { dim } _ { k } H ^ { 2 } ( V , E _ { \alpha } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , T _ { V } ). $$ | conf 0.996
 a011640139.png (139)  | 
| 10.(117.) | ![]()  | 
$N _ { m } = \left( \begin{array} { c } { m + 3 } \\ { 3 } \end{array} \right) - d m + 2 t + \tau + p - 1$ | $$ N _ { m } = \left( \begin{array} { c } { m + 3 } \\ { 3 } \end{array} \right) - d m + 2 t + \tau + p - 1. $$ | conf 0.369
 a01164027.png (27)  | 
| 11.(72.) | ![]()  | 
$p _ { \alpha } ( V ) = \left( \begin{array} { c } { n - 1 } \\ { 3 } \end{array} \right) - d ( n - 1 ) + 2 t + \tau + p - 1$ | $$ p _ { \alpha } ( V ) = \left( \begin{array} { c } { n - 1 } \\ { 3 } \end{array} \right) - d ( n - 1 ) + 2 t + \tau + p - 1 $$ | conf 0.396
 a01164029.png (29)  | 
| 12.(68.)* | ![]()  | 
$p _ { x } ( V ) = - \operatorname { dim } _ { k } H _ { 1 } ( V , O _ { V } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , O _ { V } ) =$ | $$p _ { \alpha } ( V ) = - \operatorname { dim } _ { k } H _ { 1 } ( V , {\cal O} _ { V } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , {\cal O} _ { V } ) =$$ | conf 0.756  F
 a01164047.png (47)  | 
| 13.(93.)* | ![]()  | 
$1 + p _ { x } ( V ) = \frac { \operatorname { deg } ( c _ { 1 } ^ { 2 } ) + \operatorname { deg } ( c _ { 2 } ) } { 12 }$ | $$ 1 + p _ { \alpha } ( V ) = \frac { \operatorname { deg } ( c _ { 1 } ^ { 2 } ) + \operatorname { deg } ( c _ { 2 } ) } { 12 },$$ | conf 0.752  F
 a01164053.png (53)  | 
Cartan subalgebra
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 14.(33.)* | ![]()  | 
$\mathfrak { g } 0 = \{ X \in \mathfrak { g } : \forall H \in \mathfrak { t } \exists \mathfrak { n } X , H \in Z ( ( \text { ad } H ) ^ { n } X , H ( X ) = 0 ) \}$ | $$\mathfrak { g }_0 = \big\{ X \in \mathfrak { g } : \forall H \in \mathfrak { t } \exists { n }_{X,H} \in {\mathbb Z} ( ( \text { ad } H ) ^ { n_{X , H} } ( X ) = 0 ) \big\},$$ | conf 0.110  F
 c0205509.png (9)  | 
Cartan theorem
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 15.(49.)* | ![]()  | 
$f _ { j } ] = \delta _ { i j } h _ { i } , \quad [ h _ { i } , e _ { j } ] = \alpha _ { i j } e _ { j } , \quad [ h _ { i } , f _ { j } ] = - \alpha _ { j } f _ { j }$ | $$ [e_i, f _ { j } ] = \delta _ { i j } h _ { i } , \quad [ h _ { i } , e _ { j } ] = \alpha _ { i j } e _ { j } , \quad [ h _ { i } , f _ { j } ] = - \alpha _ { ij } f _ { j }, $$ | conf 0.149  F
 c0205704.png (4)  | 
| 16.(55.)* | ![]()  | 
$\rightarrow H ^ { p } ( X , S ) \rightarrow H ^ { p } ( X , F ) \stackrel { \phi p } { \rightarrow } H ^ { p } ( X , G ) \rightarrow$ | $$ \dots \rightarrow H ^ { p } ( X , S ) \rightarrow H ^ { p } ( X , F ) \stackrel { \phi_p } { \rightarrow } H ^ { p } ( X , G ) \rightarrow $$ | conf 0.853  F
 c02057064.png (64)  | 
Comitant
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 17.(7.) | ![]()  | 
$H = \frac { 1 } { 36 } \left| \begin{array} { c c } { \frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } } & { \frac { \partial ^ { 2 } f } { \partial x \partial y } } \\ { \frac { \partial ^ { 2 } f } { \partial x \partial y } } & { \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } } \end{array} \right| =$ | $$H = \frac { 1 } { 36 } \left| \begin{array} { c c } { \frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } } & { \frac { \partial ^ { 2 } f } { \partial x \partial y } } \\ { \frac { \partial ^ { 2 } f } { \partial x \partial y } } & { \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } } \end{array} \right| =$$ | conf 0.956
 c02333033.png (33)  | 
| 18.(76.) | ![]()  | 
$= ( a _ { 0 } a _ { 2 } - a _ { 1 } ^ { 2 } ) x ^ { 2 } + ( a _ { 0 } a _ { 3 } - a _ { 1 } a _ { 2 } ) x y + ( a _ { 1 } a _ { 3 } - a _ { 2 } ^ { 2 } ) y ^ { 2 }$ | $$ = ( a _ { 0 } a _ { 2 } - a _ { 1 } ^ { 2 } ) x ^ { 2 } + ( a _ { 0 } a _ { 3 } - a _ { 1 } a _ { 2 } ) x y + ( a _ { 1 } a _ { 3 } - a _ { 2 } ^ { 2 } ) y ^ { 2 } $$ | conf 0.549
 c02333034.png (34)  | 
| 19.(11.)* | ![]()  | 
$( \alpha _ { 0 } , \alpha _ { 1 } , \alpha _ { 2 } , \alpha _ { 3 } ) \mapsto ( \alpha _ { 0 } \alpha _ { 2 } - \alpha _ { 1 } ^ { 2 } , \frac { 1 } { 2 } ( \alpha _ { 0 } \alpha _ { 3 } - \alpha _ { 1 } \alpha _ { 2 } ) , \alpha _ { 1 } \alpha _ { 3 } - \alpha _ { 2 } ^ { 2 } )$ | $$ ( \alpha _ { 0 } , \alpha _ { 1 } , \alpha _ { 2 } , \alpha _ { 3 } ) \mapsto ( \alpha _ { 0 } \alpha _ { 2 } - \alpha _ { 1 } ^ { 2 } , \frac { 1 } { 2 } ( \alpha _ { 0 } \alpha _ { 3 } - \alpha _ { 1 } \alpha _ { 2 } ) , \alpha _ { 1 } \alpha _ { 3 } - \alpha _ { 2 } ^ { 2 } ) $$ | conf 0.521  F
 c02333035.png (35)  | 
Deformation
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 20.(26.) | ![]()  | 
$\operatorname { Aut } _ { R ^ { \prime } } ( X ^ { \prime } | X _ { 0 } ) \rightarrow \operatorname { Aut } _ { R } ( X _ { R ^ { \prime } } ^ { \prime } \otimes R | X _ { 0 } )$ | $$ \operatorname { Aut } _ { R ^ { \prime } } ( X ^ { \prime } | X _ { 0 } ) \rightarrow \operatorname { Aut } _ { R } ( X _ { R ^ { \prime } } ^ { \prime } \otimes R | X _ { 0 } ) $$ | conf 0.683
\ d030700175.png (175)  | 
| 21.(27.) | ![]()  | 
$\operatorname { dim } _ { k } H ^ { 1 } ( X _ { 0 } , T _ { X _ { 0 } } ) - \operatorname { dim } M _ { X _ { 0 } } \leq \operatorname { dim } _ { k } H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } )$ | $$ \operatorname { dim } _ { k } H ^ { 1 } ( X _ { 0 } , T _ { X _ { 0 } } ) - \operatorname { dim } M _ { X _ { 0 } } \leq \operatorname { dim } _ { k } H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } ). $$ | conf 0.944
 d030700190.png (190)  | 
| 22.(78.)* | ![]()  | 
$\alpha \circ b = \alpha b + \sum _ { i = 1 } ^ { \infty } \phi _ { i } ( \alpha , b ) t ^ { i } , \quad \alpha , b \in V$ | $$ \alpha \circ b = \alpha b + \sum _ { i = 1 } ^ { \infty } \phi _ { i } ( \alpha , b ) t ^ { i } , \quad \alpha , b \in V, $$ | conf 0.097  F
 d030700263.png (263)  | 
| 23.(96.)* | ![]()  | 
$\Phi ( \alpha ) = \alpha + \sum _ { i = 1 } ^ { \infty } t ^ { i } \phi _ { i } ( \alpha ) , \quad \alpha \in V$ | $$ \Phi ( \alpha ) = \alpha + \sum _ { i = 1 } ^ { \infty } t ^ { i } \phi _ { i } ( \alpha ) , \quad \alpha \in V, $$ | conf 0.873  F
 d030700270.png (270)  | 
Differential algebra
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 24.(106.) | ![]()  | 
$S ^ { t } F = \sum _ { j = 1 } ^ { r } c _ { j } A ^ { p _ { j } } A _ { 1 } ^ { i _ { 1 j } } \dots A _ { m - l } ^ { i _ { m - l } , j }$ | $$ S ^ { t } F = \sum _ { j = 1 } ^ { r } c _ { j } A ^ { p _ { j } } A _ { 1 } ^ { i _ { 1 j } } \dots A _ { m - l } ^ { i _ { { m - l } , j } },$$ | conf 0.149
 d031830107.png (107)  | 
| 25.(146.)* | ![]()  | 
$( \eta _ { 1 } , \ldots , \eta _ { k } ) \rightarrow F ( \zeta _ { 1 } , \ldots , \zeta _ { k } )$ | $ ( \eta _ { 1 } , \ldots , \eta _ { k } ) \rightarrow {}_{\cal F} ( \zeta _ { 1 } , \ldots , \zeta _ { k } ) $ | conf 0.562  F
 d031830141.png (141)  | 
| 26.(145.)$^F$* | ![]()  | 
$( \eta _ { 1 } , \ldots , \eta _ { n } ) \rightarrow F ( \zeta _ { 1 } , \ldots , \zeta _ { n } )$ | $ ( \eta _ { 1 } , \ldots , \eta _ { n } ) \rightarrow {}_{\cal F} ( \zeta _ { 1 } , \ldots , \zeta _ { n } ) $ | conf 0.376  F
 d031830150.png (150)  | 
| 27.(57.) | ![]()  | 
$\omega _ { V } = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right)$ | $$ \omega _ { V } = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right), $$ | conf 0.780
 d03183016.png (16)  | 
| 28.(111.) | ![]()  | 
$e _ { i j } = \operatorname { ord } _ { Y } _ { j } F _ { i } , \quad 1 \leq i \leq n , \quad i \leq j \leq n$ | $$ e_ { i j } = \operatorname { ord } _ { { Y } _ { j } } F _ { i } , \quad 1 \leq i \leq n , \quad i \leq j \leq n, $$ | conf 0.187
 d03183043.png (43)  | 
Dimension polynomial
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 29.(48.) | ![]()  | 
$\omega _ { \eta / F } ( x ) = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right)$ | $$ \omega _ { \eta / F } ( x ) = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right), $$ | conf 0.968
 d03249029.png (29)  | 
Duality
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | |
|---|---|---|---|---|---|
| 30.(118.)* | ![]()  | 
$H ^ { p } ( X , F ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) ) \rightarrow C$ | $$ H ^ { p } ( X , {\cal F} ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( {\cal F} , \Omega ) ) \rightarrow {\mathbf C}, $$ | conf 0.824  F
 d034120173.png (173)  | |
| 31.(59.)* | ![]()  | 
$H ^ { p } ( X , F ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) ) \rightarrow H _ { c } ^ { n } ( X , \Omega )$ | $$ H ^ { p } ( X , {\cal F} ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( {\cal F} , \Omega ) ) \rightarrow H _ { c } ^ { n } ( X , \Omega ) $$ | conf 0.921  F
 d034120175.png (175)  | |
| 32.(124.)* | ![]()  | 
$( H ^ { p } ( X , F ) ) ^ { \prime } \cong H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) )$ | $$ ( H ^ { p } ( X , {\cal F} ) ) ^ { \prime } \cong H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( {\cal F} , \Omega ) ). $$ | conf 0.829  F
 d034120184.png (184)  | |
| 33.(29.)* | ![]()  | 
$\beta : \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X F , \Omega ) \rightarrow \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X \backslash Y || F , \Omega )$ | $$ \beta : \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X ; {\cal F} , \Omega ) \rightarrow \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X \backslash Y ; {\cal F} , \Omega ). $$ | conf 0.634 | F
 d034120236.png (236)  | 
| 34.(77.)* | ![]()  | 
$\underset { n \rightarrow \infty } { \operatorname { lim } } | \alpha _ { n } | ^ { 1 / n } = \sigma < + \infty$ | $$ \underset { n \rightarrow \infty } { \overline { \lim } } | \alpha _ { n } | ^ { 1 / n } = \sigma < + \infty. $$ | conf 0.521  F
 d034120247.png (247)  | |
| 35.(58.)* | ![]()  | 
$h ( \phi ) = \operatorname { lim } _ { r \rightarrow \infty } \frac { \operatorname { ln } | A ( r e ^ { i \phi } ) | } { r }$ | $$ h ( \phi ) = \underset { n\rightarrow \infty }{\overline{ \lim } } \frac { \operatorname { ln } | A ( r e ^ { i \phi } ) | } { r } $$ | conf 0.861  F
 d034120253.png (253)  | |
| 36.(69.)* | ![]()  | 
$\operatorname { sup } _ { l \in E ^ { \perp } } | l ( \omega ) | = \operatorname { inf } _ { x \in E } \| \omega - x \|$ | $$ \operatorname* { sup } _ { l \in E^\perp \atop \|l\|\le 1 } | l ( \omega ) | = \operatorname* { inf } _ { x \in E } \| \omega - x \|, $$ | conf 0.293   F
 d034120360.png (360)  | |
| 37.(15.) | ![]()  | 
$\operatorname { sup } _ { f \in B ^ { 1 } } | \int _ { \partial G } f ( \zeta ) \omega ( \zeta ) d \zeta | = \operatorname { inf } _ { \phi \in E ^ { 1 } } \int _ { \partial G } | \omega ( \zeta ) - \phi ( \zeta ) \| d \zeta |$ | $$ \operatorname* { sup } _ { f \in B ^ { 1 } } \big| \int\limits _ { \partial G } f ( \zeta ) \omega ( \zeta ) d \zeta \big| = \operatorname* { inf } _ { \phi \in E ^ { 1 } } \int\limits _ { \partial G } | \omega ( \zeta ) - \phi ( \zeta ) | | d \zeta |. $$ | conf 0.508
 d034120376.png (376)  | |
| 38.(52.) | ![]()  | 
$f = \{ f _ { \alpha } \} \in \prod _ { \alpha } F _ { \alpha } , \quad g = \{ g _ { \alpha } \} \in \oplus _ { \alpha } G _ { \alpha }$ | $$ f = \{ f _ { \alpha } \} \in \prod _ { \alpha } F _ { \alpha } , \quad g = \{ g _ { \alpha } \} \in \operatorname*\oplus _ { \alpha } G _ { \alpha }. $$ | conf 0.491
 d034120509.png (509)  | |
| 39.(140.) | ![]()  | 
$f ^ { * } ( x ^ { * } ) = \operatorname { sup } _ { x \in X } ( \langle x ^ { * } , x \rangle - f ( x ) )$ | $$ f ^ { * } ( x ^ { * } ) = \operatorname*{ sup } _ { x \in X } ( \langle x ^ { * } , x \rangle - f ( x ) ) $$ | conf 0.900
 d034120535.png (535)  | |
| 40.(94.) | ![]()  | 
$f _ { 0 } ( x ) \rightarrow \text { inf, } \quad f _ { i } ( x ) \leq 0 , \quad i = 1 , \ldots , m , \quad x \in B$ | $$ f _ { 0 } ( x ) \rightarrow \text { inf, } \quad f _ { i } ( x ) \leq 0 , \quad i = 1 , \ldots , m , \quad x \in B, $$ | conf 0.810
 d034120555.png (555)  | |
| 41.(74.)* | ![]()  | 
$( c _ { \gamma } , c ^ { r } ) = \sum _ { t ^ { r } \in K } c _ { r } ( t ^ { \prime } ) c ^ { r } ( t ^ { r } ) \operatorname { mod } 1$ | $$ ( c _ { \gamma } , c ^ { r } ) = \sum _ { t ^ { r } \in K } c _ { r } ( t ^ { \prime } ) c ^ { r } ( t ^ { r } ) \operatorname { mod } 1 $$ | conf 0.117  F
 d03412079.png (79)  | 
Extension of a differential field
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 42.(63.) | ![]()  | 
$F _ { 1 } F _ { 2 } = F _ { 1 } \langle F _ { 2 } \rangle = F _ { 1 } ( F _ { 2 } ) = F _ { 2 } ( F _ { 1 } ) = F _ { 2 } \langle F _ { 1 } \rangle$ | $$ F _ { 1 } F _ { 2 } = F _ { 1 } \langle F _ { 2 } \rangle = F _ { 1 } ( F _ { 2 } ) = F _ { 2 } ( F _ { 1 } ) = F _ { 2 } \langle F _ { 1 } \rangle, $$ | conf 0.628
 e03696024.png (24)  | 
Formal group
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 43.(120.)* | ![]()  | 
$\operatorname { og } F _ { MU } ( X ) = \sum _ { i = 1 } ^ { \infty } i ^ { - 1 } [ C ^ { - } P ^ { - 1 } ] X ^ { i }$ | $$ \operatorname { log } F _ {\rm MU } ( X ) = \sum _ { i = 1 } ^ { \infty } i ^ { - 1 } [ {\rm CP} ^ {i - 1 } ] X ^ { i }, $$ | conf 0.098  F
 f040820118.png (118)  | 
| 44.(147.)* | ![]()  | 
$( x _ { 1 } , \ldots , x _ { x } ) \circ ( y _ { 1 } , \ldots , y _ { n } ) = ( z _ { 1 } , \ldots , z _ { x } )$ | $$ ( x _ { 1 } , \ldots , x _ { n } ) \circ ( y _ { 1 } , \ldots , y _ { n } ) = ( z _ { 1 } , \ldots , z _ { n } ), $$ | conf 0.553  F
 f04082059.png (59)  | 
Gel'fond-Schneider method
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 45.(148.) | ![]()  | 
$\alpha ^ { \beta } = \operatorname { exp } \{ \beta \operatorname { log } \alpha \}$ | $ \alpha ^ { \beta } = \operatorname { exp } \{ \beta \operatorname { log } \alpha \} $ | conf 0.979
 g1300205.png (5)  | 
Group
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 46.(22.)* | ![]()  | 
$\left. \begin{array} { l l l } { A } & { \rightarrow Y } & { \square } \\ { \downarrow } & { \square } & { } & { \square } \\ { X } & { \square } & { } & { A } \end{array} \right.$ | Source incomplete | conf 0.226  F
 g04521075.png (75)  | 
Homogeneous space
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 47.(89.) | ![]()  | 
$\mathfrak { g } = \mathfrak { f } + \mathfrak { m } , \quad \mathfrak { f } \cap \mathfrak { m } = \{ 0 \}$ | $$\empty$$ | conf 0.793
 h04769069.png (69)  | 
Hopf algebra
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 48.(103.) | ![]()  | 
$m \circ ( \iota \otimes 1 ) \circ \mu = m \circ ( 1 \otimes \iota ) \circ \mu = e \circ \epsilon$ | $$\empty$$ | conf 0.618
 h047970129.png (129)  | 
| 49.(107.)* | ![]()  | 
$F _ { 1 } ( X || Y ) , \ldots , F _ { n } ( X || Y ) \in K [ X _ { 1 } , \ldots , X _ { n } || Y _ { 1 } , \ldots , Y _ { n } ] \}$ | $$\empty$$ | conf 0.353  F
 h047970139.png (139)  | 
| 50.(97.) | ![]()  | 
$\epsilon ( x ) = 0 , \quad \delta ( x ) = x \bigotimes 1 + 1 \bigotimes x , \quad x \in \mathfrak { g }$ | $$\empty$$ | conf 0.213
 h04797042.png (42)  | 
Invariants, theory of
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 51.(149.)* | ![]()  | 
$\alpha _ { 1 } , \ldots , i _ { R } \rightarrow \alpha _ { 2 } ^ { \prime } , \ldots , i _ { R }$ | $$\empty$$ | conf 0.142  F
 i05235015.png (15)  | 
Jordan algebra
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 52.(150.) | ![]()  | 
$H ( C _ { 3 } , \Gamma ) = \{ X \in C _ { 3 } : X = \Gamma ^ { - 1 } X \square ^ { \prime } \Gamma \}$ | $$\empty$$ | conf 0.651
 j05427030.png (30)  | 
| 53.(42.) | ![]()  | 
$\Gamma = \operatorname { diag } \{ \gamma _ { 1 } , \gamma _ { 2 } , \gamma _ { 3 } \} , \quad \gamma _ { i } \neq 0 , \quad \gamma _ { i } \in F$ | $$\empty$$ | conf 0.987
 j05427031.png (31)  | 
| 54.(125.)* | ![]()  | 
$\mathfrak { g } = \mathfrak { g } - 1 + \mathfrak { g } \mathfrak { d } + \mathfrak { g } _ { 1 }$ | $$\empty$$ | conf 0.598  F
 j05427077.png (77)  | 
Jordan matrix
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 55.(6.)* | ![]()  | 
$J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ | $$J = \left\| \begin{array} { c c c c } J_{n_1}(\lambda_1) & 0 & 0 & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & 0 & 0 & J_{n_s}(\lambda_s) \end{array} \right\|,$$ | conf 0.072  F
 j0543403.png (3)  | 
| 56.(64.) | ![]()  | 
$C _ { m } ( \lambda ) = \operatorname { rk } ( A - \lambda E ) ^ { m - 1 } - 2 \operatorname { rk } ( A - \lambda E ) ^ { m } +$ | $$\empty$$ | conf 0.955
 j05434030.png (30)  | 
| 57.(1.)* | ![]()  | 
$J _ { m } ( \lambda ) = \| \begin{array} { c c c c c c } { \lambda } & { 1 } & { \square } & { \square } & { \square } & { \square } \\ { \square } & { \lambda } & { 1 } & { \square } & { 0 } & { \square } \\ { \square } & { \square } & { \cdots } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { \cdots } & { \square } & { \square } \\ { \square } & { 0 } & { \square } & { \square } & { \lambda } & { 1 } \\ { \square } & { \square } & { \square } & { \square } & { \square } & { \lambda } \end{array} ]$ | $$J_m(\lambda) = \left\| \begin{array} { c c c c c c } \lambda & 1 & \square & \square & \square & \square \\ \square & \lambda & 1 & \square & 0 & \square \\ \square & \square & \ddots & \ddots & \square & \square\\ \square & \square & \square & \ddots & \ddots & \square \\ \square & 0 & \square & \square & \lambda & 1 \\ \square & \square & \square & \square & \square & \lambda \end{array} \right\|,$$ | conf 0.098  F
 j0543406.png (6)  | 
Lie algebra, semi-simple
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 58.(5.) | ![]()  | 
$\left\| \begin{array} { r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 2 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } \end{array} \right\|$ | $$B_n: \quad \left\| \begin{array} { r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } \\ \cdot & \cdot & \cdot & \dots & \cdot & \cdot \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 0 }\\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 2 }\\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } \end{array} \right\|,$$ | conf 0.232
 l058510127.png (127)  | 
| 59.(3.)* | ![]()  | 
$\| \left. \begin{array} { r r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } & { - 1 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 2 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 0 } & { 2 } \end{array} \right. |$ | $$D_n: \quad \left\| \begin{array} { r r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 }\\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ \cdot & \cdot & \cdot & \dots & \cdot & \cdot &\cdot & \cdot \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } & { - 1 } & { - 1 }\\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 2 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 0 } & { 2 } \end{array} \right\|,$$ | conf 0.055  F
 l058510129.png (129)  | 
| 60.(8.)* | ![]()  | 
$\left\| \begin{array} { r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|$ | $$E_6: \quad \left\| \begin{array} { r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|,$$ | conf 0.628  F
 l058510130.png (130)  | 
| 61.(4.) | ![]()  | 
$\left\| \begin{array} { r r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|$ | $$E_7: \quad \left\| \begin{array} { r r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ {-1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|,$$ | conf 0.278
 l058510131.png (131)  | 
| 62.(2.)* | ![]()  | 
$\left. \begin{array} { r l l l l l l l } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right.$ | $$E_8: \quad \left\| \begin{array} { r r r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ {-1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|,$$ | conf 0.354  F
 l058510132.png (132)  | 
| 63.(10.)* | ![]()  | 
$\left\| \begin{array} { r r r r } { 2 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 2 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\| , \quad G _ { 2 } : \quad \left\| \begin{array} { r r } { 2 } & { - 1 } \\ { - 3 } & { 2 } \end{array} \right\|$ | $$F_4: \quad \left\| \begin{array} { r r r r } { 2 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 2 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\| , \quad G _ { 2 } : \quad \left\| \begin{array} { r r } { 2 } & { - 1 } \\ { - 3 } & { 2 } \end{array} \right\|.$$ | conf 0.374  F
 l058510133.png (133)  | 
| 64.(98.) | ![]()  | 
$\mathfrak { g } _ { \alpha } = \{ X \in \mathfrak { g } : [ H , X ] = \alpha ( H ) X , H \in \mathfrak { h } \}$ | $$\empty$$ | conf 0.976
 l05851030.png (30)  | 
| 65.(126.) | ![]()  | 
$\mathfrak { g } = \mathfrak { h } + \sum _ { \alpha \in \Sigma } \mathfrak { g } _ { \alpha }$ | $$\empty$$ | conf 0.945
 l05851037.png (37)  | 
| 66.(61.)* | ![]()  | 
$\mathfrak { g } _ { \alpha } = \operatorname { dim } [ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { - \alpha } ] = 1$ | $$\empty$$ | conf 0.520  F
 l05851044.png (44)  | 
| 67.(65.)* | ![]()  | 
$[ H _ { \alpha } , X _ { \alpha } ] = 2 X _ { \alpha } \quad \text { and } \quad [ H _ { \alpha } , Y _ { \alpha } ] = - 2 Y _ { 0 }$ | $$\empty$$ | conf 0.539  F
 l05851050.png (50)  | 
| 68.(70.) | ![]()  | 
$\beta ( H _ { \alpha } ) = \frac { 2 ( \alpha , \beta ) } { ( \alpha , \alpha ) } , \quad \alpha , \beta \in \Sigma$ | $$\empty$$ | conf 0.997
 l05851051.png (51)  | 
| 69.(112.) | ![]()  | 
$[ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { \beta } ] = \mathfrak { g } _ { \alpha + \beta }$ | $$\empty$$ | conf 0.917
 l05851057.png (57)  | 
| 70.(127.) | ![]()  | 
$H _ { \alpha _ { 1 } } , \ldots , H _ { \alpha _ { k } } , X _ { \alpha } \quad ( \alpha \in \Sigma )$ | $$\empty$$ | conf 0.432
 l05851064.png (64)  | 
| 71.(113.)* | ![]()  | 
$[ [ X _ { \alpha _ { i } } , X _ { - } \alpha _ { i } ] , X _ { - \alpha _ { j } } ] = - n ( i , j ) X _ { \alpha _ { j } }$ | $$\empty$$ | conf 0.628  F
 l05851069.png (69)  | 
| 72.(79.) | ![]()  | 
$n ( i , j ) = \alpha _ { j } ( H _ { i } ) = \frac { 2 ( \alpha _ { i } , \alpha _ { j } ) } { ( \alpha _ { j } , \alpha _ { j } ) }$ | $$\empty$$ | conf 0.992
 l05851073.png (73)  | 
| 73.(13.) | ![]()  | 
$[ X _ { \alpha } , X _ { \beta } ] = \left\{ \begin{array} { l l } { N _ { \alpha , \beta } X _ { \alpha + \beta } } & { \text { if } \alpha + \beta \in \Sigma } \\ { 0 } & { \text { if } \alpha + \beta \notin \Sigma } \end{array} \right.$ | $$\empty$$ | conf 0.988
 l05851074.png (74)  | 
| 74.(80.) | ![]()  | 
$N _ { \alpha , \beta } = - N _ { - \alpha , - \beta } \quad \text { and } \quad N _ { \alpha , \beta } = \pm ( p + 1 )$ | $$\empty$$ | conf 0.961
 l05851078.png (78)  | 
| 75.(85.)* | ![]()  | 
$X _ { \alpha } - X _ { - \alpha } , \quad i ( X _ { \alpha } + X _ { - \alpha } ) \quad ( \alpha \in \Sigma _ { + } )$ | $$\empty$$ | conf 0.691  F
 l05851085.png (85)  | 
Lie algebra, solvable
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 76.(119.)* | ![]()  | 
$[ \mathfrak { g } _ { i } , \mathfrak { g } _ { i } ] \subset \mathfrak { g } _ { \mathfrak { i } } + 1$ | $$\empty$$ | conf 0.276  F
 l05852011.png (11)  | 
| 77.(141.) | ![]()  | 
$\operatorname { dim } \mathfrak { g } _ { i } = \operatorname { dim } \mathfrak { g } - i$ | $$\empty$$ | conf 0.901
 l05852046.png (46)  | 
Lie group
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 78.(62.)* | ![]()  | 
$( G ) \cong \operatorname { Aut } ( L ( G ) ) \quad \text { and } \quad L ( \operatorname { Aut } ( G ) ) \cong D ( L ( G ) )$ | $$\empty$$ | conf 0.693  F
 l058590115.png (115)  | 
| 79.(50.) | ![]()  | 
$( X , Y ) \rightarrow \operatorname { exp } ^ { - 1 } ( \operatorname { exp } X \operatorname { exp } Y ) , \quad X , Y \in L ( G )$ | $$\empty$$ | conf 0.856
 l05859086.png (86)  | 
Lie group, compact
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 80.(121.)* | ![]()  | 
$J = \left\| \begin{array} { c c } { 0 } & { E _ { x } } \\ { - E _ { x } } & { 0 } \end{array} \right\|$ | $$\empty$$ | conf 0.364  F
 l05861012.png (12)  | 
Lie group, nilpotent
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 81.(83.) | ![]()  | 
$N ( F ) = \{ g \in GL ( V ) : g v \equiv v \operatorname { mod } V _ { i } \text { for all } v \in V _ { i } , i \geq 1 \}$ | $$\empty$$ | conf 0.466
 l0586604.png (4)  | 
Lie group, semi-simple
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 82.(35.)* | ![]()  | 
$L ( \mathfrak { g } ) \cong \Gamma _ { 0 } ( \mathfrak { u } ) \cap \mathfrak { h } ^ { \prime } / \Gamma _ { 0 } ( [ \mathfrak { k } , \mathfrak { k } ] )$ | $$\empty$$ | conf 0.659  F
 l058680102.png (102)  | 
| 83.(81.)* | ![]()  | 
$\Gamma _ { 1 } = \Gamma _ { 1 } ( g ) = \{ X \in h : \alpha ( X ) \in 2 \pi i Z \text { for all } \alpha \in \Sigma \}$ | $$\empty$$ | conf 0.183  F
 l05868032.png (32)  | 
Lie p-algebra
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 84.(36.) | ![]()  | 
$( \operatorname { ad } x ) ^ { n } y = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j } \left( \begin{array} { c } { n } \\ { j } \end{array} \right) x ^ { n - j } y x ^ { j }$ | $$\empty$$ | conf 0.356
 l05872026.png (26)  | 
| 85.(99.) | ![]()  | 
$\pi ( x + y ) = \pi ( x ) + \pi ( y ) , \quad \pi ( \lambda x ) = \lambda ^ { p } \pi ( x ) , \quad \lambda \in k$ | $$\empty$$ | conf 0.964
 l05872078.png (78)  | 
Lie theorem
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 86.(134.) | ![]()  | 
$y _ { i } = f _ { i } ( g _ { 1 } , \ldots , g _ { i } || x _ { 1 } , \ldots , x _ { n } ) , \quad i = 1 , \ldots , n$ | $$\empty$$ | conf 0.276
 l05876010.png (10)  | 
| 87.(86.) | ![]()  | 
$X _ { i } = \sum _ { j = 1 } ^ { n } \xi _ { i j } ( x ) \frac { \partial } { \partial x _ { j } } , \quad i = 1 , \ldots , r$ | $$\empty$$ | conf 0.656
 l05876016.png (16)  | 
| 88.(66.)* | ![]()  | 
$\frac { \partial f _ { j } } { \partial g _ { i } } ( g , x ) = \sum _ { k = 1 } ^ { r } \xi _ { k j } ( f ( g _ { s } x ) ) \psi _ { k i } ( g )$ | $$\empty$$ | conf 0.336  F
 l05876030.png (30)  | 
| 89.(19.)* | ![]()  | 
$\sum _ { k = 1 } ^ { N } ( \xi _ { i k } \frac { \partial \xi _ { j l } } { \partial x _ { k } } - \xi _ { j k } \frac { \partial \xi _ { i l } } { \partial x _ { k } } ) = \sum _ { k = 1 } ^ { r } c _ { i j } ^ { k } \xi _ { k l }$ | $$\empty$$ | conf 0.157  F
 l05876037.png (37)  | 
| 90.(14.) | ![]()  | 
$\left. \begin{array} { c } { c _ { i j } ^ { k } = - c _ { j i } ^ { k } } \\ { \sum _ { l = 1 } ^ { r } ( c _ { i l } ^ { m } c _ { j k } ^ { l } + c _ { k l } ^ { m } c _ { i j } ^ { l } + c _ { j l } ^ { m } c _ { k i } ^ { l } ) = 0 , \quad 1 \leq i , j , k , l , m \leq r } \end{array} \right.$ | $$\empty$$ | conf 0.085
 l05876052.png (52)  | 
Maximal torus
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 91.(95.) | ![]()  | 
$F ( x _ { 1 } f _ { 1 } + \ldots + x _ { x } f _ { n } ) = x _ { 1 } x _ { n } + x _ { 2 } x _ { n } - 1 + \ldots + x _ { p } x _ { n } - p + 1$ | $$\empty$$ | conf 0.198
 m06301072.png (72)  | 
Non-Abelian cohomology
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 92.(114.)* | ![]()  | 
$\phi ( g _ { 1 } ) \phi ( g ) \phi ( g _ { 1 } g _ { 2 } ) ^ { - 1 } = \operatorname { Int } m ( g _ { 1 } , g _ { 2 } )$ | $$\empty$$ | conf 0.443  F
 n066900110.png (110)  | 
| 93.(90.)* | ![]()  | 
$( g _ { 1 } , g _ { 2 } ) = h ( g _ { 1 } ) ( \phi ( g _ { 1 } ) ( h ( g _ { 2 } ) ) ) m ( g _ { 1 } , g _ { 2 } ) h ( g _ { 1 } , g _ { 2 } ) ^ { - 1 }$ | $$\empty$$ | conf 0.764  F
 n066900118.png (118)  | 
| 94.(44.) | ![]()  | 
$\delta ( e ) = e \quad \text { and } \quad \delta ( \rho ( a ) b ) = \sigma ( a ) \delta ( b ) , \quad \alpha \in C ^ { 0 } , \quad b \in C ^ { 1 }$ | $$\empty$$ | conf 0.400
 n06690016.png (16)  | 
| 95.(60.)* | ![]()  | 
$C ^ { * } ( \mathfrak { U } , F ) = ( C ^ { 0 } ( \mathfrak { U } , F ) , C ^ { 1 } ( \mathfrak { U } , F ) , C ^ { 2 } ( \mathfrak { U } , F ) )$ | $$\empty$$ | conf 0.205  F
 n06690028.png (28)  | 
Picard scheme
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 96.(39.)* | ![]()  | 
$\operatorname { Pic } _ { X / k } ( S ^ { \prime } ) = \operatorname { Fic } ( X \times k S ^ { \prime } ) / \operatorname { Fic } ( S ^ { \prime } )$ | $$\empty$$ | conf 0.345  F +
 p07267025.png (25)  | 
Principal analytic fibration
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 97.(100.)* | ![]()  | 
$g j : U _ { i } \cap U _ { j } \rightarrow G , \quad i , j \in I , \quad U _ { i } \cap U _ { j } \neq \emptyset$ | $$\empty$$ | conf 0.184  F
 p07464025.png (25)  | 
Quantum groups
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 98.(101.) | ![]()  | 
$\phi ^ { * } : \mathfrak { g } ^ { * } \otimes \mathfrak { g } ^ { * } \rightarrow \mathfrak { g } ^ { * }$ | $$\empty$$ | conf 0.837
 q07631062.png (62)  | 
| 99.(108.) | ![]()  | 
$\delta : U _ { \mathfrak { g } } \rightarrow U _ { \mathfrak { g } } \otimes U _ { \mathfrak { g } }$ | $$\empty$$ | conf 0.648
 q07631071.png (71)  | 
| 100.(56.)* | ![]()  | 
$\delta ( \alpha ) = \operatorname { lim } _ { h \rightarrow 0 } h ^ { - 1 } ( \Delta ( a ) - \Delta ^ { \prime } ( \alpha ) )$ | $$\empty$$ | conf 0.304  F
 q07631072.png (72)  | 
| 101.(129.)* | ![]()  | 
$[ \alpha , X _ { i } ^ { \pm } ] = \pm \alpha _ { i } ( \alpha ) X _ { i } ^ { \pm } \quad \text { for } a$ | $$\empty$$ | conf 0.544  F
 q07631088.png (88)  | 
| 102.(128.) | ![]()  | 
$[ X _ { i } ^ { + } , X _ { j } ^ { - } ] = 2 \delta _ { i j } h ^ { - 1 } \operatorname { sinh } ( h H _ { i } / 2 )$ | $$\empty$$ | conf 0.893
 q07631089.png (89)  | 
| 103.(20.) | ![]()  | 
$\sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) q ^ { - k ( n - k ) / 2 } ( X _ { i } ^ { \pm } ) ^ { k } X _ { j } ^ { \pm } \cdot ( X _ { i } ^ { \pm } ) ^ { n - k } = 0$ | $$\empty$$ | conf 0.055
 q07631092.png (92)  | 
| 104.(30.) | ![]()  | 
$\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$ | $$\empty$$ | conf 0.443
 q07631095.png (95)  | 
| 105.(21.)* | ![]()  | 
$\Delta ( X _ { i } ^ { \pm } ) = X _ { i } ^ { \pm } \bigotimes \operatorname { exp } ( \frac { h H _ { i } } { 4 } ) + \operatorname { exp } ( \frac { - h H _ { i } } { 4 } ) \otimes x _ { i } ^ { \pm }$ | $$\empty$$ | conf 0.212  F
 q07631099.png (99)  | 
Rational representation
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 106.(91.) | ![]()  | 
$0 \leq \frac { 2 ( \chi , \alpha ) } { ( \alpha , \alpha ) } < p \quad \text { for all } \alpha \in \Delta$ | $$\empty$$ | conf 0.879
 r077630100.png (100)  | 
| 107.(135.) | ![]()  | 
$\phi _ { 0 } \bigotimes \phi _ { 1 } ^ { Fr } \otimes \ldots \otimes \phi _ { d } ^ { FF ^ { d } }$ | $$\empty$$ | conf 0.136
 r077630104.png (104)  | 
| 108.(45.)* | ![]()  | 
$\chi = \delta _ { \phi } - \sum _ { \alpha \in \Delta } m _ { \alpha } \alpha , \quad m _ { \alpha } \in Z , \quad m _ { \alpha } \geq 0$ | $$\empty$$ | conf 0.862  F
 r07763055.png (55)  | 
Singular point
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 109.(31.) | ![]()  | 
$\sum _ { k _ { 1 } , \ldots , k _ { n } = 0 } ^ { \infty } c _ { k _ { 1 } \cdots k _ { n } } ( z _ { 1 } - \zeta _ { 1 } ) ^ { k _ { 1 } } \ldots ( z _ { n } - \zeta _ { n } ) ^ { k _ { n } }$ | $$\empty$$ | conf 0.324
 s085590225.png (225)  | 
| 110.(46.) | ![]()  | 
$\frac { m _ { 1 } } { n _ { 1 } } < \frac { m _ { 2 } } { n _ { 1 } n _ { 2 } } < \ldots < \frac { m _ { g } } { n _ { 1 } \ldots n _ { g } } = \frac { m _ { g } } { n }$ | $$\empty$$ | conf 0.459
 s085590404.png (404)  | 
| 111.(115.)* | ![]()  | 
$p ( Z ) = 1 - \operatorname { dim } H ^ { 0 } ( Z , O _ { Z } ) + \operatorname { dim } H ^ { 1 } ( Z , O _ { Z } )$ | $$\empty$$ | conf 0.997  F
 s085590429.png (429)  | 
| 112.(136.)* | ![]()  | 
$X _ { \epsilon } = \{ ( x _ { 0 } , \ldots , x _ { x } ) : f ( x _ { 0 } , \ldots , x _ { x } ) = \epsilon \}$ | $$\empty$$ | conf 0.433  F
 s085590440.png (440)  | 
| 113.(12.) | ![]()  | 
$= \left\{ \begin{array} { l l } { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } } & { \text { if } \mu = 2 k } \\ { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } ( x + ( k + 1 ) \lambda ) } & { \text { if } \mu = 2 k + 1 } \end{array} \right.$ | $$\empty$$ | conf 0.870
 s085590458.png (458)  | 
| 114.(75.) | ![]()  | 
$( \frac { \partial F ( x , y , \lambda ) } { \partial x } , \frac { \partial F ( x , y , \lambda ) } { \partial y } )$ | $$\empty$$ | conf 0.986
 s085590482.png (482)  | 
| 115.(137.) | ![]()  | 
$\frac { d x _ { i } } { d x _ { i _ { 0 } } } = f _ { i } ( x ) , \quad f _ { i } \in C ( U ) , \quad i \neq i _ { 0 }$ | $$\empty$$ | conf 0.594
 s085590515.png (515)  | 
| 116.(142.)* | ![]()  | 
$A = \| \left. \begin{array} { l l } { \alpha } & { b } \\ { c } & { e } \end{array} \right. |$ | $$\empty$$ | conf 0.506  F
 s085590527.png (527)  | 
| 117.(53.) | ![]()  | 
$\Delta = ( F _ { x x } ^ { \prime \prime } ) _ { 0 } ( F _ { y y } ^ { \prime \prime } ) _ { 0 } - ( F _ { x y } ^ { \prime \prime } ) _ { 0 } ^ { 2 }$ | $$\empty$$ | conf 0.920
 s085590634.png (634)  | 
| 118.(16.)* | ![]()  | 
$\left| \begin{array} { l l l } { F _ { X } ^ { \prime } } & { F _ { y } ^ { \prime } } & { F _ { z } ^ { \prime } } \\ { G _ { \chi } ^ { \prime } } & { G _ { y } ^ { \prime } } & { G _ { Z } ^ { \prime } } \end{array} \right|$ | $$\empty$$ | conf 0.230  F
 s085590645.png (645)  | 
| 119.(92.) | ![]()  | 
$( F _ { X } ^ { \prime } ) _ { 0 } = 0 , \quad ( F _ { y } ^ { \prime } ) _ { 0 } = 0 , \quad ( F _ { z } ^ { \prime } ) _ { 0 } = 0$ | $$\empty$$ | conf 0.300
 s085590653.png (653)  | 
Solv manifold
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 120.(138.) | ![]()  | 
$\{ e \} \rightarrow \Delta \rightarrow \pi \rightarrow Z ^ { s } \rightarrow \{ e \}$ | $$\empty$$ | conf 0.972
 s08610054.png (54)  | 
Stability theorems in algebraic K-theory
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 121.(71.) | ![]()  | 
$\psi _ { t _ { 1 } , \ldots , t _ { R } } ^ { \prime } : S K _ { 1 } ( R ) \rightarrow S K _ { 1 } ( R ( t _ { 1 } , \ldots , t _ { n } ) )$ | $$\empty$$ | conf 0.379
 s08706033.png (33)  | 
Steinberg module
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 122.(130.) | ![]()  | 
$e = \frac { | U | } { | G | } ( \sum _ { b \in B } b ) ( \sum _ { w \in W } \operatorname { sign } ( w ) w )$ | $$\empty$$ | conf 0.138
 s13053016.png (16)  | 
Steinberg symbol
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 123.(24.)* | ![]()  | 
$( x _ { i j } ( a ) , x _ { k l } ( b ) ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } i \neq 1 , j \neq k } \\ { x _ { 1 } ( a b ) } & { \text { if } i \neq 1 , j = k } \end{array} \right.$ | $$\empty$$ | conf 0.381  F
 s13054017.png (17)  | 
Tilting theory
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 124.(84.) | ![]()  | 
$0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ | $$\empty$$ | conf 0.946
 t130130105.png (105)  | 
Tits quadratic form
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 125.(18.) | ![]()  | 
$q R ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { i } x _ { j } + \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { , j } x _ { i } x _ { j }$ | $$\empty$$ | conf 0.112
 t130140104.png (104)  | 
| 126.(40.) | ![]()  | 
$[ X ] \mapsto \chi _ { R } ( [ X ] ) = \sum _ { m = 0 } ^ { \infty } ( - 1 ) ^ { m } \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { m } ( X , X )$ | $$\empty$$ | conf 0.116
 t130140118.png (118)  | 
| 127.(132.)* | ![]()  | 
$\operatorname { dim } _ { 1 } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow Z ^ { Q _ { 0 } }$ | $$\empty$$ | conf 0.287 F
 t130140119.png (119)  | 
| 128.(37.)* | ![]()  | 
$q ( x ) = \sum _ { i \in I } x _ { i } ^ { 2 } + \sum _ { i \prec j } x _ { i } x _ { j } - \sum _ { p \in \operatorname { max } l } ( \sum _ { i \prec p } x _ { i } ) x _ { p }$ | $$\empty$$ | conf 0.197  F
 t130140140.png (140)  | 
| 129.(131.)* | ![]()  | 
$X \mapsto \operatorname { dim } X = ( \operatorname { dim } _ { K } X _ { j } ) _ { j \in Q _ { 0 } }$ | $$\empty$$ | conf 0.819  F
 t13014044.png (44)  | 
| 130.(25.) | ![]()  | 
$[ X ] \mapsto \chi _ { Q } ( [ X ] ) = \operatorname { dim } _ { K } \operatorname { End } _ { Q } ( X ) - \operatorname { dim } _ { K } \operatorname { Ext } _ { Q } ^ { 1 } ( X , X )$ | $$\empty$$ | conf 0.661
 t13014048.png (48)  | 
| 131.(38.)* | ![]()  | 
$A _ { Q } ( v ) = \prod _ { i , j \in Q _ { 0 } } \prod _ { \langle \beta : j \rightarrow i \rangle \in Q _ { 1 } } M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta }$ | $$\empty$$ | conf 0.481  F
 t13014056.png (56)  | 
| 132.(139.)* | ![]()  | 
$\Phi ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { i , j \in Q _ { 0 } } d _ { i j } x _ { i } x _ { j }$ | $$\empty$$ | conf 0.648  F
 t1301406.png (6)  | 
Torus
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 133.(41.)* | ![]()  | 
$r = \alpha \operatorname { sin } u k + l ( 1 + \epsilon \operatorname { cos } u ) ( i \operatorname { cos } v + j \operatorname { sin } v )$ | $$\empty$$ | conf 0.585  F
 t0933502.png (2)  | 
| 134.(122.)* | ![]()  | 
$d s ^ { 2 } = \alpha ^ { 2 } d u ^ { 2 } + l ^ { 2 } ( 1 + \epsilon \operatorname { cos } u ) ^ { 2 } d v ^ { 2 }$ | $$\empty$$ | conf 0.696  F
 t0933507.png (7)  | 
Uniform distribution
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 135.(9.) | ![]()  | 
$u _ { 3 } ( x ) = \left\{ \begin{array} { l l } { \frac { x ^ { 2 } } { 2 } , } & { 0 \leq x < 1 } \\ { \frac { [ x ^ { 2 } - 3 ( x - 1 ) ^ { 2 } ] } { 2 } , } & { 1 \leq x < 2 } \\ { \frac { [ x ^ { 2 } - 3 ( x - 1 ) ^ { 2 } + 3 ( x - 2 ) ^ { 2 } ] } { 2 } , } & { 2 \leq x < 3 } \\ { 0 , } & { x \notin [ 0,3 ] } \end{array} \right.$ | $$\empty$$ | conf 0.733
 u09524027.png (27)  | 
| 136.(32.)* | ![]()  | 
$p ( x ) = \left\{ \begin{array} { l l } { \frac { 1 } { b - \alpha } , } & { x \in [ \alpha , b ] } \\ { 0 , } & { x \notin [ \alpha , b ] } \end{array} \right.$ | $$\empty$$ | conf 0.681  F
 u0952403.png (3)  | 
| 137.(34.) | ![]()  | 
$u _ { n } ( x ) = \frac { 1 } { ( n - 1 ) ! } \sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) ( x - k ) _ { + } ^ { n - 1 }$ | $$\empty$$ | conf 0.569
 u09524030.png (30)  | 
| 138.(109.) | ![]()  | 
$z _ { + } = \left\{ \begin{array} { l l } { z , } & { z > 0 } \\ { 0 , } & { z \leq 0 } \end{array} \right.$ | $$\empty$$ | conf 0.676
 u09524034.png (34)  | 
| 139.(43.) | ![]()  | 
$F ( x ) = \left\{ \begin{array} { l l } { 0 , } & { x \leq a } \\ { \frac { x - a } { b - a } , } & { a < x \leq b } \\ { 1 , } & { x > b } \end{array} \right.$ | $$\empty$$ | conf 0.468
 u0952407.png (7)  | 
| 140.(47.) | ![]()  | 
$p ( x _ { 1 } , \ldots , x _ { n } ) = \left\{ \begin{array} { l l } { C \neq 0 , } & { x \in D } \\ { 0 , } & { x \notin D } \end{array} \right.$ | $$\empty$$ | conf 0.705
 u09524072.png (72)  | 
Unipotent group
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 141.(143.) | ![]()  | 
$\{ g \in \operatorname { GL } ( V ) : ( 1 - g ) ^ { n } = 0 \} , \quad n = \operatorname { dim } V$ | $$\empty$$ | conf 0.287
 u0954106.png (6)  | 
Weyl module
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 142.(51.) | ![]()  | 
$\operatorname { diag } ( t _ { 1 } , \ldots , t _ { n } ) \mapsto t _ { 1 } ^ { \lambda _ { 1 } } \ldots t _ { n } ^ { \lambda _ { n } } \in K$ | $$\empty$$ | conf 0.507
 w120090122.png (122)  | 
| 143.(54.)* | ![]()  | 
$\chi _ { \lambda } = \sum _ { \mu \in \Lambda ( n ) } \operatorname { dim } _ { K } ( \Delta ( \lambda ) ^ { \mu } ) _ { e _ { \mu } }$ | $$\empty$$ | conf 0.461  F
 w120090135.png (135)  | 
| 144.(110.) | ![]()  | 
$\mathfrak { B } = \{ e _ { \pm } \alpha , h _ { \beta } : \alpha \in \Phi ^ { + } , \beta \in \Sigma \}$ | $$\empty$$ | conf 0.381
 w120090259.png (259)  | 
| 145.(82.) | ![]()  | 
$\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ | $$\empty$$ | conf 0.487
 w120090342.png (342)  | 
| 146.(28.)* | ![]()  | 
$\mathfrak { S } _ { \{ 1 , \ldots , \lambda _ { 1 } \} } \times \mathfrak { S } _ { \{ \lambda _ { 1 } + 1 , \ldots , \lambda _ { 1 } + \lambda _ { 2 } \} } \times$ | $$\empty$$ | conf 0.312  F
 w12009095.png (95)  | 
| 147.(104.) | ![]()  | 
$\ldots \times \mathfrak { S } _ { \{ \lambda _ { 1 } + \ldots + \lambda _ { n - 1 } + 1 , \ldots , r \} }$ | $$\empty$$ | conf 0.259
 w12009096.png (96)  | 
Witt vector
| Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, corrected version | Confidence, F?
 png file  | 
|---|---|---|---|---|
| 148.(87.)* | ![]()  | 
$\langle \alpha > < b \rangle = \langle \alpha b \rangle , \quad \langle 1 \rangle = f _ { 1 } = V _ { 1 } =$ | $$\empty$$ | conf 0.351  F
 w098100172.png (172)  | 
| 149.(123.)* | ![]()  | 
$\langle \alpha + b \rangle = \sum _ { n = 1 } ^ { \infty } V _ { n } \langle r _ { n } ( \alpha , b ) f$ | $$\empty$$ | conf 0.143  F
 w098100177.png (177)  | 
| 150.(102.) | ![]()  | 
$\sigma ( \alpha _ { 1 } , \alpha _ { 2 } , \ldots ) = ( \alpha _ { 1 } ^ { p } , \alpha _ { 2 } ^ { p } , \ldots )$ | $$\empty$$ | conf 0.771
 w098100190.png (190)  | 
Ulf Rehmann/Table of automatically generated TeX code. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ulf_Rehmann/Table_of_automatically_generated_TeX_code&oldid=44188





















































































































































