Namespaces
Variants
Actions

User:Ulf Rehmann/Table of automatically generated TeX code

From Encyclopedia of Mathematics
Jump to: navigation, search

This page gives an analysis of the code here, generated automatically from some png files underlying our old wiki pages. As it does contain a lot of $\TeX$ code, it loads slowly.


Algebraic curve

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

1.(23.) a01145065.png $g \leq \left\{ \begin{array} { l l } { \frac { ( n - 2 ) ^ { 2 } } { 4 } } & { \text { for even } n } \\ { \frac { ( n - 1 ) ( n - 3 ) } { 4 } } & { \text { for odd } n } \end{array} \right.$ $$ g \leq \left\{ \begin{array} { l l } { \frac { ( n - 2 ) ^ { 2 } } { 4 } } & { \text { for even } n, } \\ { \frac { ( n - 1 ) ( n - 3 ) } { 4 } } & { \text { for odd } n, } \end{array} \right.$$ conf 0.698

a01145065.png (65)

Algebraic geometry

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

2.(116.) a01150014.png $\theta = \int _ { 0 } ^ { \lambda } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ $$\theta = \int\limits _ { 0 } ^ { \lambda } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }, $$ conf 0.997

a01150014.png (14)

3.(133.) a01150021.png $\omega = 2 \int _ { 0 } ^ { 1 / c } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ $$\omega = 2 \int\limits _ { 0 } ^ { 1 / c } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }, $$ conf 0.973

a01150021.png (21)

4.(67.) a01150022.png $\overline { w } = 2 \int _ { 0 } ^ { 1 / \varepsilon } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ $$\widetilde{ w } = 2 \int\limits _ { 0 } ^ { 1 / \varepsilon } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } },$$ conf 0.107

a01150022.png (22)

5.(105.) a01150044.png $\theta ( v + \pi i r ) = \theta ( r ) , \quad \theta ( v + \alpha _ { j } ) = e ^ { L _ { j } ( v ) } \theta ( v )$ $$\theta ( v + \pi i r ) = \theta ( r ) , \quad \theta ( v + \alpha _ { j } ) = e ^ { L _ { j } ( v ) } \theta ( v ), $$ conf 0.775

a01150044.png (44)

6.(17.) a01150078.png $\left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \equiv \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) ( \operatorname { mod } 7 )$ $$\left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \equiv \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) ( \operatorname { mod } 7 ). $$ conf 0.440

a01150078.png (78)

Algebraic surface

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

7.(144.) a011640132.png $0 \rightarrow O _ { V } \rightarrow E _ { \alpha } \rightarrow T _ { V } \rightarrow 0$ $$0 \rightarrow {\cal O} _ { V } \rightarrow E _ { \alpha } \rightarrow T _ { V } \rightarrow 0$$ conf 0.981

a011640132.png (132)

8.(73.) a011640137.png $M = \operatorname { dim } \operatorname { Im } ( H ^ { 1 } ( V , E _ { \alpha } ) \rightarrow H ^ { 1 } ( V , T _ { V } ) )$ $$ M = \operatorname { dim } \operatorname { Im } ( H ^ { 1 } ( V , E _ { \alpha } ) \rightarrow H ^ { 1 } ( V , T _ { V } ) ). $$ conf 0.997

a011640137.png (137)

9.(88.) a011640139.png $\operatorname { dim } _ { k } H ^ { 2 } ( V , E _ { \alpha } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , T _ { V } )$ $$ \operatorname { dim } _ { k } H ^ { 2 } ( V , E _ { \alpha } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , T _ { V } ). $$ conf 0.996

a011640139.png (139)

10.(117.) a01164027.png $N _ { m } = \left( \begin{array} { c } { m + 3 } \\ { 3 } \end{array} \right) - d m + 2 t + \tau + p - 1$ $$ N _ { m } = \left( \begin{array} { c } { m + 3 } \\ { 3 } \end{array} \right) - d m + 2 t + \tau + p - 1. $$ conf 0.369

a01164027.png (27)

11.(72.) a01164029.png $p _ { \alpha } ( V ) = \left( \begin{array} { c } { n - 1 } \\ { 3 } \end{array} \right) - d ( n - 1 ) + 2 t + \tau + p - 1$ $$ p _ { \alpha } ( V ) = \left( \begin{array} { c } { n - 1 } \\ { 3 } \end{array} \right) - d ( n - 1 ) + 2 t + \tau + p - 1 $$ conf 0.396

a01164029.png (29)

12.(68.)* a01164047.png $p _ { x } ( V ) = - \operatorname { dim } _ { k } H _ { 1 } ( V , O _ { V } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , O _ { V } ) =$ $$p _ { \alpha } ( V ) = - \operatorname { dim } _ { k } H _ { 1 } ( V , {\cal O} _ { V } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , {\cal O} _ { V } ) =$$ conf 0.756 F

a01164047.png (47)

13.(93.)* a01164053.png $1 + p _ { x } ( V ) = \frac { \operatorname { deg } ( c _ { 1 } ^ { 2 } ) + \operatorname { deg } ( c _ { 2 } ) } { 12 }$ $$ 1 + p _ { \alpha } ( V ) = \frac { \operatorname { deg } ( c _ { 1 } ^ { 2 } ) + \operatorname { deg } ( c _ { 2 } ) } { 12 },$$ conf 0.752 F

a01164053.png (53)

Cartan subalgebra

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

14.(33.)* c0205509.png $\mathfrak { g } 0 = \{ X \in \mathfrak { g } : \forall H \in \mathfrak { t } \exists \mathfrak { n } X , H \in Z ( ( \text { ad } H ) ^ { n } X , H ( X ) = 0 ) \}$ $$\mathfrak { g }_0 = \big\{ X \in \mathfrak { g } : \forall H \in \mathfrak { t } \exists { n }_{X,H} \in {\mathbb Z} ( ( \text { ad } H ) ^ { n_{X , H} } ( X ) = 0 ) \big\},$$ conf 0.110 F

c0205509.png (9)

Cartan theorem

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

15.(49.)* c0205704.png $f _ { j } ] = \delta _ { i j } h _ { i } , \quad [ h _ { i } , e _ { j } ] = \alpha _ { i j } e _ { j } , \quad [ h _ { i } , f _ { j } ] = - \alpha _ { j } f _ { j }$ $$ [e_i, f _ { j } ] = \delta _ { i j } h _ { i } , \quad [ h _ { i } , e _ { j } ] = \alpha _ { i j } e _ { j } , \quad [ h _ { i } , f _ { j } ] = - \alpha _ { ij } f _ { j }, $$ conf 0.149 F

c0205704.png (4)

16.(55.)* c02057064.png $\rightarrow H ^ { p } ( X , S ) \rightarrow H ^ { p } ( X , F ) \stackrel { \phi p } { \rightarrow } H ^ { p } ( X , G ) \rightarrow$ $$ \dots \rightarrow H ^ { p } ( X , S ) \rightarrow H ^ { p } ( X , F ) \stackrel { \phi_p } { \rightarrow } H ^ { p } ( X , G ) \rightarrow $$ conf 0.853 F

c02057064.png (64)

Comitant

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

17.(7.) c02333033.png $H = \frac { 1 } { 36 } \left| \begin{array} { c c } { \frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } } & { \frac { \partial ^ { 2 } f } { \partial x \partial y } } \\ { \frac { \partial ^ { 2 } f } { \partial x \partial y } } & { \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } } \end{array} \right| =$ $$H = \frac { 1 } { 36 } \left| \begin{array} { c c } { \frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } } & { \frac { \partial ^ { 2 } f } { \partial x \partial y } } \\ { \frac { \partial ^ { 2 } f } { \partial x \partial y } } & { \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } } \end{array} \right| =$$ conf 0.956

c02333033.png (33)

18.(76.) c02333034.png $= ( a _ { 0 } a _ { 2 } - a _ { 1 } ^ { 2 } ) x ^ { 2 } + ( a _ { 0 } a _ { 3 } - a _ { 1 } a _ { 2 } ) x y + ( a _ { 1 } a _ { 3 } - a _ { 2 } ^ { 2 } ) y ^ { 2 }$ $$ = ( a _ { 0 } a _ { 2 } - a _ { 1 } ^ { 2 } ) x ^ { 2 } + ( a _ { 0 } a _ { 3 } - a _ { 1 } a _ { 2 } ) x y + ( a _ { 1 } a _ { 3 } - a _ { 2 } ^ { 2 } ) y ^ { 2 } $$ conf 0.549

c02333034.png (34)

19.(11.)* c02333035.png $( \alpha _ { 0 } , \alpha _ { 1 } , \alpha _ { 2 } , \alpha _ { 3 } ) \mapsto ( \alpha _ { 0 } \alpha _ { 2 } - \alpha _ { 1 } ^ { 2 } , \frac { 1 } { 2 } ( \alpha _ { 0 } \alpha _ { 3 } - \alpha _ { 1 } \alpha _ { 2 } ) , \alpha _ { 1 } \alpha _ { 3 } - \alpha _ { 2 } ^ { 2 } )$ $$ ( \alpha _ { 0 } , \alpha _ { 1 } , \alpha _ { 2 } , \alpha _ { 3 } ) \mapsto ( \alpha _ { 0 } \alpha _ { 2 } - \alpha _ { 1 } ^ { 2 } , \frac { 1 } { 2 } ( \alpha _ { 0 } \alpha _ { 3 } - \alpha _ { 1 } \alpha _ { 2 } ) , \alpha _ { 1 } \alpha _ { 3 } - \alpha _ { 2 } ^ { 2 } ) $$ conf 0.521 F

c02333035.png (35)

Deformation

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

20.(26.) d030700175.png $\operatorname { Aut } _ { R ^ { \prime } } ( X ^ { \prime } | X _ { 0 } ) \rightarrow \operatorname { Aut } _ { R } ( X _ { R ^ { \prime } } ^ { \prime } \otimes R | X _ { 0 } )$ $$ \operatorname { Aut } _ { R ^ { \prime } } ( X ^ { \prime } | X _ { 0 } ) \rightarrow \operatorname { Aut } _ { R } ( X _ { R ^ { \prime } } ^ { \prime } \otimes R | X _ { 0 } ) $$ conf 0.683
\

d030700175.png (175)

21.(27.) d030700190.png $\operatorname { dim } _ { k } H ^ { 1 } ( X _ { 0 } , T _ { X _ { 0 } } ) - \operatorname { dim } M _ { X _ { 0 } } \leq \operatorname { dim } _ { k } H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } )$ $$ \operatorname { dim } _ { k } H ^ { 1 } ( X _ { 0 } , T _ { X _ { 0 } } ) - \operatorname { dim } M _ { X _ { 0 } } \leq \operatorname { dim } _ { k } H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } ). $$ conf 0.944

d030700190.png (190)

22.(78.)* d030700263.png $\alpha \circ b = \alpha b + \sum _ { i = 1 } ^ { \infty } \phi _ { i } ( \alpha , b ) t ^ { i } , \quad \alpha , b \in V$ $$ \alpha \circ b = \alpha b + \sum _ { i = 1 } ^ { \infty } \phi _ { i } ( \alpha , b ) t ^ { i } , \quad \alpha , b \in V, $$ conf 0.097 F

d030700263.png (263)

23.(96.)* d030700270.png $\Phi ( \alpha ) = \alpha + \sum _ { i = 1 } ^ { \infty } t ^ { i } \phi _ { i } ( \alpha ) , \quad \alpha \in V$ $$ \Phi ( \alpha ) = \alpha + \sum _ { i = 1 } ^ { \infty } t ^ { i } \phi _ { i } ( \alpha ) , \quad \alpha \in V, $$ conf 0.873 F

d030700270.png (270)

Differential algebra

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

24.(106.) d031830107.png $S ^ { t } F = \sum _ { j = 1 } ^ { r } c _ { j } A ^ { p _ { j } } A _ { 1 } ^ { i _ { 1 j } } \dots A _ { m - l } ^ { i _ { m - l } , j }$ $$ S ^ { t } F = \sum _ { j = 1 } ^ { r } c _ { j } A ^ { p _ { j } } A _ { 1 } ^ { i _ { 1 j } } \dots A _ { m - l } ^ { i _ { { m - l } , j } },$$ conf 0.149

d031830107.png (107)

25.(146.)* d031830141.png $( \eta _ { 1 } , \ldots , \eta _ { k } ) \rightarrow F ( \zeta _ { 1 } , \ldots , \zeta _ { k } )$ $ ( \eta _ { 1 } , \ldots , \eta _ { k } ) \rightarrow {}_{\cal F} ( \zeta _ { 1 } , \ldots , \zeta _ { k } ) $ conf 0.562 F

d031830141.png (141)

26.(145.)$^F$* d031830150.png $( \eta _ { 1 } , \ldots , \eta _ { n } ) \rightarrow F ( \zeta _ { 1 } , \ldots , \zeta _ { n } )$ $ ( \eta _ { 1 } , \ldots , \eta _ { n } ) \rightarrow {}_{\cal F} ( \zeta _ { 1 } , \ldots , \zeta _ { n } ) $ conf 0.376 F

d031830150.png (150)

27.(57.) d03183016.png $\omega _ { V } = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right)$ $$ \omega _ { V } = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right), $$ conf 0.780

d03183016.png (16)

28.(111.) d03183043.png $e _ { i j } = \operatorname { ord } _ { Y } _ { j } F _ { i } , \quad 1 \leq i \leq n , \quad i \leq j \leq n$ $$ e_ { i j } = \operatorname { ord } _ { { Y } _ { j } } F _ { i } , \quad 1 \leq i \leq n , \quad i \leq j \leq n, $$ conf 0.187

d03183043.png (43)

Dimension polynomial

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

29.(48.) d03249029.png $\omega _ { \eta / F } ( x ) = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right)$ $$ \omega _ { \eta / F } ( x ) = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right), $$ conf 0.968

d03249029.png (29)

Duality

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

30.(118.)* d034120173.png $H ^ { p } ( X , F ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) ) \rightarrow C$ $$ H ^ { p } ( X , {\cal F} ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( {\cal F} , \Omega ) ) \rightarrow {\mathbf C}, $$ conf 0.824 F

d034120173.png (173)

31.(59.)* d034120175.png $H ^ { p } ( X , F ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) ) \rightarrow H _ { c } ^ { n } ( X , \Omega )$ $$ H ^ { p } ( X , {\cal F} ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( {\cal F} , \Omega ) ) \rightarrow H _ { c } ^ { n } ( X , \Omega ) $$ conf 0.921 F

d034120175.png (175)

32.(124.)* d034120184.png $( H ^ { p } ( X , F ) ) ^ { \prime } \cong H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) )$ $$ ( H ^ { p } ( X , {\cal F} ) ) ^ { \prime } \cong H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( {\cal F} , \Omega ) ). $$ conf 0.829 F

d034120184.png (184)

33.(29.)* d034120236.png $\beta : \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X F , \Omega ) \rightarrow \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X \backslash Y || F , \Omega )$ $$ \beta : \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X ; {\cal F} , \Omega ) \rightarrow \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X \backslash Y ; {\cal F} , \Omega ). $$ conf 0.634 F

d034120236.png (236)

34.(77.)* d034120247.png $\underset { n \rightarrow \infty } { \operatorname { lim } } | \alpha _ { n } | ^ { 1 / n } = \sigma < + \infty$ $$ \underset { n \rightarrow \infty } { \overline { \lim } } | \alpha _ { n } | ^ { 1 / n } = \sigma < + \infty. $$ conf 0.521 F

d034120247.png (247)

35.(58.)* d034120253.png $h ( \phi ) = \operatorname { lim } _ { r \rightarrow \infty } \frac { \operatorname { ln } | A ( r e ^ { i \phi } ) | } { r }$ $$ h ( \phi ) = \underset { n\rightarrow \infty }{\overline{ \lim } } \frac { \operatorname { ln } | A ( r e ^ { i \phi } ) | } { r } $$ conf 0.861 F

d034120253.png (253)

36.(69.)* d034120360.png $\operatorname { sup } _ { l \in E ^ { \perp } } | l ( \omega ) | = \operatorname { inf } _ { x \in E } \| \omega - x \|$ $$ \operatorname* { sup } _ { l \in E^\perp \atop \|l\|\le 1 } | l ( \omega ) | = \operatorname* { inf } _ { x \in E } \| \omega - x \|, $$ conf 0.293 F

d034120360.png (360)

37.(15.) d034120376.png $\operatorname { sup } _ { f \in B ^ { 1 } } | \int _ { \partial G } f ( \zeta ) \omega ( \zeta ) d \zeta | = \operatorname { inf } _ { \phi \in E ^ { 1 } } \int _ { \partial G } | \omega ( \zeta ) - \phi ( \zeta ) \| d \zeta |$ $$ \operatorname* { sup } _ { f \in B ^ { 1 } } \big| \int\limits _ { \partial G } f ( \zeta ) \omega ( \zeta ) d \zeta \big| = \operatorname* { inf } _ { \phi \in E ^ { 1 } } \int\limits _ { \partial G } | \omega ( \zeta ) - \phi ( \zeta ) | | d \zeta |. $$ conf 0.508

d034120376.png (376)

38.(52.) d034120509.png $f = \{ f _ { \alpha } \} \in \prod _ { \alpha } F _ { \alpha } , \quad g = \{ g _ { \alpha } \} \in \oplus _ { \alpha } G _ { \alpha }$ $$ f = \{ f _ { \alpha } \} \in \prod _ { \alpha } F _ { \alpha } , \quad g = \{ g _ { \alpha } \} \in \operatorname*\oplus _ { \alpha } G _ { \alpha }. $$ conf 0.491

d034120509.png (509)

39.(140.) d034120535.png $f ^ { * } ( x ^ { * } ) = \operatorname { sup } _ { x \in X } ( \langle x ^ { * } , x \rangle - f ( x ) )$ $$ f ^ { * } ( x ^ { * } ) = \operatorname*{ sup } _ { x \in X } ( \langle x ^ { * } , x \rangle - f ( x ) ) $$ conf 0.900

d034120535.png (535)

40.(94.) d034120555.png $f _ { 0 } ( x ) \rightarrow \text { inf, } \quad f _ { i } ( x ) \leq 0 , \quad i = 1 , \ldots , m , \quad x \in B$ $$ f _ { 0 } ( x ) \rightarrow \text { inf, } \quad f _ { i } ( x ) \leq 0 , \quad i = 1 , \ldots , m , \quad x \in B, $$ conf 0.810

d034120555.png (555)

41.(74.)* d03412079.png $( c _ { \gamma } , c ^ { r } ) = \sum _ { t ^ { r } \in K } c _ { r } ( t ^ { \prime } ) c ^ { r } ( t ^ { r } ) \operatorname { mod } 1$ $$ ( c _ { \gamma } , c ^ { r } ) = \sum _ { t ^ { r } \in K } c _ { r } ( t ^ { \prime } ) c ^ { r } ( t ^ { r } ) \operatorname { mod } 1 $$ conf 0.117 F

d03412079.png (79)

Extension of a differential field

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

42.(63.) e03696024.png $F _ { 1 } F _ { 2 } = F _ { 1 } \langle F _ { 2 } \rangle = F _ { 1 } ( F _ { 2 } ) = F _ { 2 } ( F _ { 1 } ) = F _ { 2 } \langle F _ { 1 } \rangle$ $$ F _ { 1 } F _ { 2 } = F _ { 1 } \langle F _ { 2 } \rangle = F _ { 1 } ( F _ { 2 } ) = F _ { 2 } ( F _ { 1 } ) = F _ { 2 } \langle F _ { 1 } \rangle, $$ conf 0.628

e03696024.png (24)

Formal group

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

43.(120.)* f040820118.png $\operatorname { og } F _ { MU } ( X ) = \sum _ { i = 1 } ^ { \infty } i ^ { - 1 } [ C ^ { - } P ^ { - 1 } ] X ^ { i }$ $$ \operatorname { log } F _ {\rm MU } ( X ) = \sum _ { i = 1 } ^ { \infty } i ^ { - 1 } [ {\rm CP} ^ {i - 1 } ] X ^ { i }, $$ conf 0.098 F

f040820118.png (118)

44.(147.)* f04082059.png $( x _ { 1 } , \ldots , x _ { x } ) \circ ( y _ { 1 } , \ldots , y _ { n } ) = ( z _ { 1 } , \ldots , z _ { x } )$ $$ ( x _ { 1 } , \ldots , x _ { n } ) \circ ( y _ { 1 } , \ldots , y _ { n } ) = ( z _ { 1 } , \ldots , z _ { n } ), $$ conf 0.553 F

f04082059.png (59)

Gel'fond-Schneider method

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

45.(148.) g1300205.png $\alpha ^ { \beta } = \operatorname { exp } \{ \beta \operatorname { log } \alpha \}$ $ \alpha ^ { \beta } = \operatorname { exp } \{ \beta \operatorname { log } \alpha \} $ conf 0.979

g1300205.png (5)

Group

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

46.(22.)* g04521075.png $\left. \begin{array} { l l l } { A } & { \rightarrow Y } & { \square } \\ { \downarrow } & { \square } & { } & { \square } \\ { X } & { \square } & { } & { A } \end{array} \right.$ Source incomplete conf 0.226 F

g04521075.png (75)

Homogeneous space

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

47.(89.) h04769069.png $\mathfrak { g } = \mathfrak { f } + \mathfrak { m } , \quad \mathfrak { f } \cap \mathfrak { m } = \{ 0 \}$ $$ \mathfrak { g } = \mathfrak { f } + \mathfrak { m } , \quad \mathfrak { f } \cap \mathfrak { m } = \{ 0 \}, $$ conf 0.793

h04769069.png (69)

Hopf algebra

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

48.(103.) h047970129.png $m \circ ( \iota \otimes 1 ) \circ \mu = m \circ ( 1 \otimes \iota ) \circ \mu = e \circ \epsilon$ $m \circ ( \iota \otimes 1 ) \circ \mu = m \circ ( 1 \otimes \iota ) \circ \mu = e \circ \epsilon$ conf 0.618

h047970129.png (129)

49.(107.)* h047970139.png $F _ { 1 } ( X || Y ) , \ldots , F _ { n } ( X || Y ) \in K [ X _ { 1 } , \ldots , X _ { n } || Y _ { 1 } , \ldots , Y _ { n } ] \}$ $F _ { 1 } ( X ; Y ) , \ldots , F _ { n } ( X ; Y ) \in K [ X _ { 1 } , \ldots , X _ { n } ; Y _ { 1 } , \ldots , Y _ { n } ] \}$ conf 0.353 F

h047970139.png (139)

50.(97.) h04797042.png $\epsilon ( x ) = 0 , \quad \delta ( x ) = x \bigotimes 1 + 1 \bigotimes x , \quad x \in \mathfrak { g }$ $$ \epsilon ( x ) = 0 , \quad \delta ( x ) = x \otimes 1 + 1 \otimes x , \quad x \in \mathfrak { g }. $$ conf 0.213

h04797042.png (42)

Invariants, theory of

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

51.(149.)* i05235015.png $\alpha _ { 1 } , \ldots , i _ { R } \rightarrow \alpha _ { 2 } ^ { \prime } , \ldots , i _ { R }$ $$ \alpha _ { i_1,\dots, i_n } \rightarrow \alpha _ { i_1, \dots, i_n} ^ { \prime }. $$ conf 0.142 F

i05235015.png (15)

Jordan algebra

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

52.(150.) j05427030.png $H ( C _ { 3 } , \Gamma ) = \{ X \in C _ { 3 } : X = \Gamma ^ { - 1 } X \square ^ { \prime } \Gamma \}$ $$ ( C _ { 3 } , \Gamma ) = \big\{ X \in C _ { 3 } : X = \Gamma ^ { - 1 } X \square ^ { \prime } \Gamma \big\} , $$ conf 0.651

j05427030.png (30)

53.(42.) j05427031.png $\Gamma = \operatorname { diag } \{ \gamma _ { 1 } , \gamma _ { 2 } , \gamma _ { 3 } \} , \quad \gamma _ { i } \neq 0 , \quad \gamma _ { i } \in F$ $$ \Gamma = \operatorname { diag } \{ \gamma _ { 1 } , \gamma _ { 2 } , \gamma _ { 3 } \} , \quad \gamma _ { i } \neq 0 , \quad \gamma _ { i } \in F, $$ conf 0.987

j05427031.png (31)

54.(125.)* j05427077.png $\mathfrak { g } = \mathfrak { g } - 1 + \mathfrak { g } \mathfrak { d } + \mathfrak { g } _ { 1 }$ $\mathfrak { g } = \mathfrak { g }_{ - 1} + \mathfrak { g }_0 + \mathfrak { g } _ { 1 }$ conf 0.598 F

j05427077.png (77)

Jordan matrix

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

55.(6.)* j0543403.png $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ $$J = \left\| \begin{array} { c c c c } J_{n_1}(\lambda_1) & 0 & 0 & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & 0 & 0 & J_{n_s}(\lambda_s) \end{array} \right\|,$$ conf 0.072 F

j0543403.png (3)

56.(64.) j05434030.png $C _ { m } ( \lambda ) = \operatorname { rk } ( A - \lambda E ) ^ { m - 1 } - 2 \operatorname { rk } ( A - \lambda E ) ^ { m } +$ $$ C _ { m } ( \lambda ) = \operatorname { rk } ( A - \lambda E ) ^ { m - 1 } - 2 \operatorname { rk } ( A - \lambda E ) ^ { m } + $$ conf 0.955

j05434030.png (30)

57.(1.)* j0543406.png $J _ { m } ( \lambda ) = \| \begin{array} { c c c c c c } { \lambda } & { 1 } & { \square } & { \square } & { \square } & { \square } \\ { \square } & { \lambda } & { 1 } & { \square } & { 0 } & { \square } \\ { \square } & { \square } & { \cdots } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { \cdots } & { \square } & { \square } \\ { \square } & { 0 } & { \square } & { \square } & { \lambda } & { 1 } \\ { \square } & { \square } & { \square } & { \square } & { \square } & { \lambda } \end{array} ]$ $$J_m(\lambda) = \left\| \begin{array} { c c c c c c } \lambda & 1 & \square & \square & \square & \square \\ \square & \lambda & 1 & \square & 0 & \square \\ \square & \square & \ddots & \ddots & \square & \square\\ \square & \square & \square & \ddots & \ddots & \square \\ \square & 0 & \square & \square & \lambda & 1 \\ \square & \square & \square & \square & \square & \lambda \end{array} \right\|,$$ conf 0.098 F

j0543406.png (6)

Lie algebra, semi-simple

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

58.(5.) l058510127.png $\left\| \begin{array} { r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 2 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } \end{array} \right\|$ $$B_n: \quad \left\| \begin{array} { r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } \\ \cdot & \cdot & \cdot & \dots & \cdot & \cdot \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 0 }\\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 2 }\\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } \end{array} \right\|,$$ conf 0.232

l058510127.png (127)

59.(3.)* l058510129.png $\| \left. \begin{array} { r r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } & { - 1 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 2 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 0 } & { 2 } \end{array} \right. |$ $$D_n: \quad \left\| \begin{array} { r r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 }\\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ \cdot & \cdot & \cdot & \dots & \cdot & \cdot &\cdot & \cdot \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } & { - 1 } & { - 1 }\\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 2 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 0 } & { 2 } \end{array} \right\|,$$ conf 0.055 F

l058510129.png (129)

60.(8.)* l058510130.png $\left\| \begin{array} { r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|$ $$E_6: \quad \left\| \begin{array} { r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|,$$ conf 0.628 F

l058510130.png (130)

61.(4.) l058510131.png $\left\| \begin{array} { r r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|$ $$E_7: \quad \left\| \begin{array} { r r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ {-1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|,$$ conf 0.278

l058510131.png (131)

62.(2.)* l058510132.png $\left. \begin{array} { r l l l l l l l } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right.$ $$E_8: \quad \left\| \begin{array} { r r r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ {-1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|,$$ conf 0.354 F

l058510132.png (132)

63.(10.)* l058510133.png $\left\| \begin{array} { r r r r } { 2 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 2 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\| , \quad G _ { 2 } : \quad \left\| \begin{array} { r r } { 2 } & { - 1 } \\ { - 3 } & { 2 } \end{array} \right\|$ $$F_4: \quad \left\| \begin{array} { r r r r } { 2 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 2 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\| , \quad G _ { 2 } : \quad \left\| \begin{array} { r r } { 2 } & { - 1 } \\ { - 3 } & { 2 } \end{array} \right\|.$$ conf 0.374 F

l058510133.png (133)

64.(98.) l05851030.png $\mathfrak { g } _ { \alpha } = \{ X \in \mathfrak { g } : [ H , X ] = \alpha ( H ) X , H \in \mathfrak { h } \}$ $$ \mathfrak { g } _ { \alpha } = \{ X \in \mathfrak { g } : [ H , X ] = \alpha ( H ) X , H \in \mathfrak { h } \}. $$ conf 0.976

l05851030.png (30)

65.(126.) l05851037.png $\mathfrak { g } = \mathfrak { h } + \sum _ { \alpha \in \Sigma } \mathfrak { g } _ { \alpha }$ $$ \mathfrak { g } = \mathfrak { h } + \sum _ { \alpha \in \Sigma } \mathfrak { g } _ { \alpha } .$$ conf 0.945

l05851037.png (37)

66.(61.)* l05851044.png $\mathfrak { g } _ { \alpha } = \operatorname { dim } [ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { - \alpha } ] = 1$ $$ \mathfrak { g } _ { \alpha } = \operatorname { dim } [ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { - \alpha } ] = 1 .$$ conf 0.520 F

l05851044.png (44)

67.(65.)* l05851050.png $[ H _ { \alpha } , X _ { \alpha } ] = 2 X _ { \alpha } \quad \text { and } \quad [ H _ { \alpha } , Y _ { \alpha } ] = - 2 Y _ { 0 }$ $$ [ H _ { \alpha } , X _ { \alpha } ] = 2 X _ { \alpha } \quad {\rm and } \quad [ H _ { \alpha } , Y _ { \alpha } ] = - 2 Y _ { \alpha }. $$ conf 0.539 F

l05851050.png (50)

68.(70.) l05851051.png $\beta ( H _ { \alpha } ) = \frac { 2 ( \alpha , \beta ) } { ( \alpha , \alpha ) } , \quad \alpha , \beta \in \Sigma$ $$ \beta ( H _ { \alpha } ) = \frac { 2 ( \alpha , \beta ) } { ( \alpha , \alpha ) } , \quad \alpha , \beta \in \Sigma, $$ conf 0.997

l05851051.png (51)

69.(112.) l05851057.png $[ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { \beta } ] = \mathfrak { g } _ { \alpha + \beta }$ $$ [ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { \beta } ] = \mathfrak { g } _ { \alpha + \beta } $$ conf 0.917

l05851057.png (57)

70.(127.) l05851064.png $H _ { \alpha _ { 1 } } , \ldots , H _ { \alpha _ { k } } , X _ { \alpha } \quad ( \alpha \in \Sigma )$ $$ H _ { \alpha _ { 1 } } , \ldots , H _ { \alpha _ { k } } , X _ { \alpha } \quad ( \alpha \in \Sigma ) $$ conf 0.432

l05851064.png (64)

71.(113.)* l05851069.png $[ [ X _ { \alpha _ { i } } , X _ { - } \alpha _ { i } ] , X _ { - \alpha _ { j } } ] = - n ( i , j ) X _ { \alpha _ { j } }$ $$ [ [ X _ { \alpha _ { i } } , X _ { - } \alpha _ { i } ] , X _ { - \alpha _ { j } } ] = - n ( i , j ) X _ { \alpha _ { j } }, $$ conf 0.628 F

l05851069.png (69)

72.(79.) l05851073.png $n ( i , j ) = \alpha _ { j } ( H _ { i } ) = \frac { 2 ( \alpha _ { i } , \alpha _ { j } ) } { ( \alpha _ { j } , \alpha _ { j } ) }$ $$ n ( i , j ) = \alpha _ { j } ( H _ { i } ) = \frac { 2 ( \alpha _ { i } , \alpha _ { j } ) } { ( \alpha _ { j } , \alpha _ { j } ) }. $$ conf 0.992

l05851073.png (73)

73.(13.) l05851074.png $[ X _ { \alpha } , X _ { \beta } ] = \left\{ \begin{array} { l l } { N _ { \alpha , \beta } X _ { \alpha + \beta } } & { \text { if } \alpha + \beta \in \Sigma } \\ { 0 } & { \text { if } \alpha + \beta \notin \Sigma } \end{array} \right.$ $$ [ X _ { \alpha } , X _ { \beta } ] = \left\{ \begin{array} { l l } { N _ { \alpha , \beta } X _ { \alpha + \beta } } & { \text { if } \alpha + \beta \in \Sigma, } \\ { 0 } & { \text { if } \alpha + \beta \notin \Sigma, } \end{array} \right. $$ conf 0.988

l05851074.png (74)

74.(80.) l05851078.png $N _ { \alpha , \beta } = - N _ { - \alpha , - \beta } \quad \text { and } \quad N _ { \alpha , \beta } = \pm ( p + 1 )$ $$ N _ { \alpha , \beta } = - N _ { - \alpha , - \beta } \quad {\rm and } \quad N _ { \alpha , \beta } = \pm ( p + 1 ), $$ conf 0.961

l05851078.png (78)

75.(85.)* l05851085.png $X _ { \alpha } - X _ { - \alpha } , \quad i ( X _ { \alpha } + X _ { - \alpha } ) \quad ( \alpha \in \Sigma _ { + } )$ $$ iH_\alpha, X _ { \alpha } - X _ { - \alpha } , \quad i ( X _ { \alpha } + X _ { - \alpha } ) \quad ( \alpha \in \Sigma _ { + } ) $$ conf 0.691 F

l05851085.png (85)

Lie algebra, solvable

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

76.(119.)* l05852011.png $[ \mathfrak { g } _ { i } , \mathfrak { g } _ { i } ] \subset \mathfrak { g } _ { \mathfrak { i } } + 1$ $ [ \mathfrak { g } _ { i } , \mathfrak { g } _ { i } ] \subset \mathfrak {g}_{ i + 1 } $ conf 0.276 F

l05852011.png (11)

77.(141.) l05852046.png $\operatorname { dim } \mathfrak { g } _ { i } = \operatorname { dim } \mathfrak { g } - i$ $ \operatorname { dim } \mathfrak { g } _ { i } = \operatorname { dim } \mathfrak { g } - i $ conf 0.901

l05852046.png (46)

Lie group

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

78.(62.)* l058590115.png $( G ) \cong \operatorname { Aut } ( L ( G ) ) \quad \text { and } \quad L ( \operatorname { Aut } ( G ) ) \cong D ( L ( G ) )$ $$ \operatorname { Aut } ( G ) \cong \operatorname { Aut } ( L ( G ) ) \quad {\rm and } \quad L ( \operatorname { Aut } ( G ) ) \cong D ( L ( G ) ), $$ conf 0.693 F

l058590115.png (115)

79.(50.) l05859086.png $( X , Y ) \rightarrow \operatorname { exp } ^ { - 1 } ( \operatorname { exp } X \operatorname { exp } Y ) , \quad X , Y \in L ( G )$ $$ ( X , Y ) \rightarrow \operatorname { exp } ^ { - 1 } ( \operatorname { exp } X \operatorname { exp } Y ) , \quad X , Y \in L ( G ), $$ conf 0.856

l05859086.png (86)

Lie group, compact

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

80.(121.)* l05861012.png $J = \left\| \begin{array} { c c } { 0 } & { E _ { x } } \\ { - E _ { x } } & { 0 } \end{array} \right\|$ $$ J = \left\| \begin{array} { c c } { 0 } & { E _ { x } } \\ { - E _ { x } } & { 0 } \end{array} \right\|, $$ conf 0.364 F

l05861012.png (12)

Lie group, nilpotent

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

81.(83.) l0586604.png $N ( F ) = \{ g \in GL ( V ) : g v \equiv v \operatorname { mod } V _ { i } \text { for all } v \in V _ { i } , i \geq 1 \}$ $$ N( F ) = \{ g \in GL ( V ) : g v \equiv v \operatorname { mod } V _ { i } \; \text{for all } v \in V _ { i } ,\; i \geq 1 \} $$ conf 0.466

l0586604.png (4)

Lie group, semi-simple

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

82.(35.)* l058680102.png $L ( \mathfrak { g } ) \cong \Gamma _ { 0 } ( \mathfrak { u } ) \cap \mathfrak { h } ^ { \prime } / \Gamma _ { 0 } ( [ \mathfrak { k } , \mathfrak { k } ] )$ $$ L ( \mathfrak { g } ) \cong \Gamma _ { 0 } ( \mathfrak { u } ) \cap \mathfrak { h } ^ { \prime } / \Gamma _ { 0 } ( [ \mathfrak { k } , \mathfrak { k } ] ) $$ conf 0.659 F

l058680102.png (102)

83.(81.)* l05868032.png $\Gamma _ { 1 } = \Gamma _ { 1 } ( g ) = \{ X \in h : \alpha ( X ) \in 2 \pi i Z \text { for all } \alpha \in \Sigma \}$ $$ \Gamma _ { 1 } = \Gamma _ { 1 } ( g ) = \{ X \in h : \alpha ( X ) \in 2 \pi i {\mathbf Z} \;\text {for all } \alpha \in \Sigma \}. $$ conf 0.183 F

l05868032.png (32)

Lie p-algebra

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

84.(36.) l05872026.png $( \operatorname { ad } x ) ^ { n } y = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j } \left( \begin{array} { c } { n } \\ { j } \end{array} \right) x ^ { n - j } y x ^ { j }$ $$ ( \operatorname { ad } x ) ^ { n } y = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j } \left( \begin{array} { c } { n } \\ { j } \end{array} \right) x ^ { n - j } y x ^ { j } $$ conf 0.356

l05872026.png (26)

85.(99.) l05872078.png $\pi ( x + y ) = \pi ( x ) + \pi ( y ) , \quad \pi ( \lambda x ) = \lambda ^ { p } \pi ( x ) , \quad \lambda \in k$ $$ \pi ( x + y ) = \pi ( x ) + \pi ( y ) , \quad \pi ( \lambda x ) = \lambda ^ { p } \pi ( x ) , \quad \lambda \in k .$$ conf 0.964

l05872078.png (78)

Lie theorem

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

86.(134.) l05876010.png $y _ { i } = f _ { i } ( g _ { 1 } , \ldots , g _ { i } || x _ { 1 } , \ldots , x _ { n } ) , \quad i = 1 , \ldots , n$ $$ y _ { i } = f _ { i } ( g _ { 1 } , \ldots , g _ { i } ; x _ { 1 } , \ldots , x _ { n } ) , \quad i = 1 , \ldots , n $$ conf 0.276

l05876010.png (10)

87.(86.) l05876016.png $X _ { i } = \sum _ { j = 1 } ^ { n } \xi _ { i j } ( x ) \frac { \partial } { \partial x _ { j } } , \quad i = 1 , \ldots , r$ $$ X _ { i } = \sum _ { j = 1 } ^ { n } \xi _ { i j } ( x ) \frac { \partial } { \partial x _ { j } } , \quad i = 1 , \ldots , r ,$$ conf 0.656

l05876016.png (16)

88.(66.)* l05876030.png $\frac { \partial f _ { j } } { \partial g _ { i } } ( g , x ) = \sum _ { k = 1 } ^ { r } \xi _ { k j } ( f ( g _ { s } x ) ) \psi _ { k i } ( g )$ $$ \frac { \partial f _ { j } } { \partial g _ { i } } ( g , x ) = \sum _ { k = 1 } ^ { r } \xi _ { k j } ( f ( g _ { s } x ) ) \psi _ { k i } ( g ), $$ conf 0.336 F

l05876030.png (30)

89.(19.)* l05876037.png $\sum _ { k = 1 } ^ { N } ( \xi _ { i k } \frac { \partial \xi _ { j l } } { \partial x _ { k } } - \xi _ { j k } \frac { \partial \xi _ { i l } } { \partial x _ { k } } ) = \sum _ { k = 1 } ^ { r } c _ { i j } ^ { k } \xi _ { k l }$ $$ \sum _ { k = 1 } ^ { N } ( \xi _ { i k } \frac { \partial \xi _ { j l } } { \partial x _ { k } } - \xi _ { j k } \frac { \partial \xi _ { i l } } { \partial x _ { k } } ) = \sum _ { k = 1 } ^ { r } c _ { i j } ^ { k } \xi _ { k l },$$ conf 0.157 F

l05876037.png (37)

90.(14.) l05876052.png $\left. \begin{array} { c } { c _ { i j } ^ { k } = - c _ { j i } ^ { k } } \\ { \sum _ { l = 1 } ^ { r } ( c _ { i l } ^ { m } c _ { j k } ^ { l } + c _ { k l } ^ { m } c _ { i j } ^ { l } + c _ { j l } ^ { m } c _ { k i } ^ { l } ) = 0 , \quad 1 \leq i , j , k , l , m \leq r } \end{array} \right.$ $$ \left. \begin{array} { c } { c _ { i j } ^ { k } = - c _ { j i } ^ { k } }, \\ { \displaystyle\sum _ { l = 1 } ^ { r } ( c _ { i l } ^ { m } c _ { j k } ^ { l } + c _ { k l } ^ { m } c _ { i j } ^ { l } + c _ { j l } ^ { m } c _ { k i } ^ { l } ) = 0 , \quad 1 \leq i , j , k , l , m \leq r, } \end{array} \right\} $$ conf 0.085

l05876052.png (52)

Maximal torus

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

91.(95.) m06301072.png $F ( x _ { 1 } f _ { 1 } + \ldots + x _ { x } f _ { n } ) = x _ { 1 } x _ { n } + x _ { 2 } x _ { n } - 1 + \ldots + x _ { p } x _ { n } - p + 1$ $$ F ( x _ { 1 } f _ { 1 } + \ldots + x _ { x } f _ { n } ) = x _ { 1 } x _ { n } + x _ { 2 } x _ { n - 1 }+ \ldots + x _ { p } x _ { n - p + 1 }, $$ conf 0.198

m06301072.png (72)

Non-Abelian cohomology

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

92.(114.)* n066900110.png $\phi ( g _ { 1 } ) \phi ( g ) \phi ( g _ { 1 } g _ { 2 } ) ^ { - 1 } = \operatorname { Int } m ( g _ { 1 } , g _ { 2 } )$ $$ \phi ( g _ { 1 } ) \phi ( g_2 ) \phi ( g _ { 1 } g _ { 2 } ) ^ { - 1 } = \operatorname { Int } m ( g _ { 1 } , g _ { 2 } ), $$ conf 0.443 F

n066900110.png (110)

93.(90.)* n066900118.png $( g _ { 1 } , g _ { 2 } ) = h ( g _ { 1 } ) ( \phi ( g _ { 1 } ) ( h ( g _ { 2 } ) ) ) m ( g _ { 1 } , g _ { 2 } ) h ( g _ { 1 } , g _ { 2 } ) ^ { - 1 }$ $$ m'( g _ { 1 } , g _ { 2 } ) = h ( g _ { 1 } ) ( \phi ( g _ { 1 } ) ( h ( g _ { 2 } ) ) ) m ( g _ { 1 } , g _ { 2 } ) h ( g _ { 1 } , g _ { 2 } ) ^ { - 1 } .$$ conf 0.764 F

n066900118.png (118)

94.(44.) n06690016.png $\delta ( e ) = e \quad \text { and } \quad \delta ( \rho ( a ) b ) = \sigma ( a ) \delta ( b ) , \quad \alpha \in C ^ { 0 } , \quad b \in C ^ { 1 }$ $$ \delta ( e ) = e \quad \;\text {and } \quad \delta ( \rho ( a ) b ) = \sigma ( a ) \delta ( b ) , \quad \alpha \in C ^ { 0 } , \quad b \in C ^ { 1 }, $$ conf 0.400

n06690016.png (16)

95.(60.)* n06690028.png $C ^ { * } ( \mathfrak { U } , F ) = ( C ^ { 0 } ( \mathfrak { U } , F ) , C ^ { 1 } ( \mathfrak { U } , F ) , C ^ { 2 } ( \mathfrak { U } , F ) )$ $$ C ^ { * } ( \mathfrak { U } , {\cal F} ) = ( C ^ { 0 } ( \mathfrak { U } , {\cal F} ) , C ^ { 1 } ( \mathfrak { U } ,{\cal F} ) , C ^ { 2 } ( \mathfrak { U } , {\cal F} ) ), $$ conf 0.205 F

n06690028.png (28)

Picard scheme

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

96.(39.)* p07267025.png $\operatorname { Pic } _ { X / k } ( S ^ { \prime } ) = \operatorname { Fic } ( X \times k S ^ { \prime } ) / \operatorname { Fic } ( S ^ { \prime } )$ $$ \operatorname { Pic } _ { X / k } ( S ^ { \prime } ) = \operatorname { Pic } ( X \times_k S ^ { \prime } ) / \operatorname { Pic } ( S ^ { \prime } ) $$ conf 0.345 F +

p07267025.png (25)

Principal analytic fibration

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

97.(100.)* p07464025.png $g j : U _ { i } \cap U _ { j } \rightarrow G , \quad i , j \in I , \quad U _ { i } \cap U _ { j } \neq \emptyset$ $$ g_j : U _ { i } \cap U _ { j } \rightarrow G , \quad i , j \in I , \quad U _ { i } \cap U _ { j } \neq \emptyset, $$ conf 0.184 F

p07464025.png (25)

Quantum groups

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

98.(101.) q07631062.png $\phi ^ { * } : \mathfrak { g } ^ { * } \otimes \mathfrak { g } ^ { * } \rightarrow \mathfrak { g } ^ { * }$ $$ \phi ^ { * } : \mathfrak { g } ^ { * } \otimes \mathfrak { g } ^ { * } \rightarrow \mathfrak { g } ^ { * } $$ conf 0.837

q07631062.png (62)

99.(108.) q07631071.png $\delta : U _ { \mathfrak { g } } \rightarrow U _ { \mathfrak { g } } \otimes U _ { \mathfrak { g } }$ $$ \delta : U _ { \mathfrak { g } } \rightarrow U _ { \mathfrak { g } } \otimes U _ { \mathfrak { g } } $$ conf 0.648

q07631071.png (71)

100.(56.)* q07631072.png $\delta ( \alpha ) = \operatorname { lim } _ { h \rightarrow 0 } h ^ { - 1 } ( \Delta ( a ) - \Delta ^ { \prime } ( \alpha ) )$ $$ \delta ( \alpha ) = \operatorname { lim } _ { h \rightarrow 0 } h ^ { - 1 } ( \Delta ( a ) - \Delta ^ { \prime } ( \alpha ) ) $$ conf 0.304 F

q07631072.png (72)

101.(129.)* q07631088.png $[ \alpha , X _ { i } ^ { \pm } ] = \pm \alpha _ { i } ( \alpha ) X _ { i } ^ { \pm } \quad \text { for } a$ $$ [ \alpha , X _ { i } ^ { \pm } ] = \pm \alpha _ { i } ( \alpha ) X _ { i } ^ { \pm } \quad \text {for } a \in \mathfrak{h}; $$ conf 0.544 F

q07631088.png (88)

102.(128.) q07631089.png $[ X _ { i } ^ { + } , X _ { j } ^ { - } ] = 2 \delta _ { i j } h ^ { - 1 } \operatorname { sinh } ( h H _ { i } / 2 )$ $$ [ X _ { i } ^ { + } , X _ { j } ^ { - } ] = 2 \delta _ { i j } h ^ { - 1 } \operatorname { sinh } ( h H _ { i } / 2 ). $$ conf 0.893

q07631089.png (89)

103.(20.) q07631092.png $\sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) q ^ { - k ( n - k ) / 2 } ( X _ { i } ^ { \pm } ) ^ { k } X _ { j } ^ { \pm } \cdot ( X _ { i } ^ { \pm } ) ^ { n - k } = 0$ $$ \sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) q ^ { - k ( n - k ) / 2 } ( X _ { i } ^ { \pm } ) ^ { k } X _ { j } ^ { \pm } \cdot ( X _ { i } ^ { \pm } ) ^ { n - k } = 0. $$ conf 0.055

q07631092.png (92)

104.(30.) q07631095.png $\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$ $$ \left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }. $$ conf 0.443

q07631095.png (95)

105.(21.)* q07631099.png $\Delta ( X _ { i } ^ { \pm } ) = X _ { i } ^ { \pm } \bigotimes \operatorname { exp } ( \frac { h H _ { i } } { 4 } ) + \operatorname { exp } ( \frac { - h H _ { i } } { 4 } ) \otimes x _ { i } ^ { \pm }$ $$ \Delta ( X _ { i } ^ { \pm } ) = X _ { i } ^ { \pm } \bigotimes \operatorname { exp } ( \frac { h H _ { i } } { 4 } ) + \operatorname { exp } ( \frac { - h H _ { i } } { 4 } ) \otimes X _ { i } ^ { \pm }. $$ conf 0.212 F

q07631099.png (99)

Rational representation

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

106.(91.) r077630100.png $0 \leq \frac { 2 ( \chi , \alpha ) } { ( \alpha , \alpha ) } < p \quad \text { for all } \alpha \in \Delta$ $$ 0 \leq \frac { 2 ( \chi , \alpha ) } { ( \alpha , \alpha ) } < p \quad \text {for all } \alpha \in \Delta. $$ conf 0.879

r077630100.png (100)

107.(135.) r077630104.png $\phi _ { 0 } \bigotimes \phi _ { 1 } ^ { Fr } \otimes \ldots \otimes \phi _ { d } ^ { FF ^ { d } }$ $$ \phi _ { 0 } \bigotimes \phi _ { 1 } ^ { Fr } \otimes \ldots \otimes \phi _ { d } ^ {{ Fr }^ { d } }, $$ conf 0.136

r077630104.png (104)

108.(45.)* r07763055.png $\chi = \delta _ { \phi } - \sum _ { \alpha \in \Delta } m _ { \alpha } \alpha , \quad m _ { \alpha } \in Z , \quad m _ { \alpha } \geq 0$ $$ \chi = \delta _ { \phi } - \sum _ { \alpha \in \Delta } m _ { \alpha } \alpha , \quad m _ { \alpha } \in Z , \quad m _ { \alpha } \geq 0. $$ conf 0.862 F

r07763055.png (55)

Singular point

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

109.(31.) s085590225.png $\sum _ { k _ { 1 } , \ldots , k _ { n } = 0 } ^ { \infty } c _ { k _ { 1 } \cdots k _ { n } } ( z _ { 1 } - \zeta _ { 1 } ) ^ { k _ { 1 } } \ldots ( z _ { n } - \zeta _ { n } ) ^ { k _ { n } }$ $$ \sum _ { k _ { 1 } , \ldots , k _ { n } = 0 } ^ { \infty } c _ { k _ { 1 } \cdots k _ { n } } ( z _ { 1 } - \zeta _ { 1 } ) ^ { k _ { 1 } } \ldots ( z _ { n } - \zeta _ { n } ) ^ { k _ { n } } $$ conf 0.324

s085590225.png (225)

110.(46.) s085590404.png $\frac { m _ { 1 } } { n _ { 1 } } < \frac { m _ { 2 } } { n _ { 1 } n _ { 2 } } < \ldots < \frac { m _ { g } } { n _ { 1 } \ldots n _ { g } } = \frac { m _ { g } } { n }$ $$ \frac { m _ { 1 } } { n _ { 1 } } < \frac { m _ { 2 } } { n _ { 1 } n _ { 2 } } < \ldots < \frac { m _ { g } } { n _ { 1 } \ldots n _ { g } } = \frac { m _ { g } } { n } $$ conf 0.459

s085590404.png (404)

111.(115.)* s085590429.png $p ( Z ) = 1 - \operatorname { dim } H ^ { 0 } ( Z , O _ { Z } ) + \operatorname { dim } H ^ { 1 } ( Z , O _ { Z } )$ $$ p ( Z ) = 1 - \operatorname { dim } H ^ { 0 } ( {\mathbf Z} , {\cal O} _ {\mathbf Z } ) + \operatorname { dim } H ^ { 1 } ( {\mathbf Z} , {\cal O} _ {\mathbf Z } ) $$ conf 0.997 F

s085590429.png (429)

112.(136.)* s085590440.png $X _ { \epsilon } = \{ ( x _ { 0 } , \ldots , x _ { x } ) : f ( x _ { 0 } , \ldots , x _ { x } ) = \epsilon \}$ $$ X _ { \epsilon } = \{ ( x _ { 0 } , \ldots , x _ { x } ) : f ( x _ { 0 } , \ldots , x _ { x } ) = \epsilon \} $$ conf 0.433 F

s085590440.png (440)

113.(12.) s085590458.png $= \left\{ \begin{array} { l l } { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } } & { \text { if } \mu = 2 k } \\ { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } ( x + ( k + 1 ) \lambda ) } & { \text { if } \mu = 2 k + 1 } \end{array} \right.$ $$ = \left\{ \begin{array} { l l } { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } } & { \text { if } \mu = 2 k, } \\ { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } ( x + ( k + 1 ) \lambda ) } & { \text { if } \mu = 2 k + 1, } \end{array} \right. $$ conf 0.870

s085590458.png (458)

114.(75.) s085590482.png $( \frac { \partial F ( x , y , \lambda ) } { \partial x } , \frac { \partial F ( x , y , \lambda ) } { \partial y } )$ $$ \big( \frac { \partial F ( x , y , \lambda ) } { \partial x } , \frac { \partial F ( x , y , \lambda ) } { \partial y } \big) $$ conf 0.986

s085590482.png (482)

115.(137.) s085590515.png $\frac { d x _ { i } } { d x _ { i _ { 0 } } } = f _ { i } ( x ) , \quad f _ { i } \in C ( U ) , \quad i \neq i _ { 0 }$ $$ \frac { d x _ { i } } { d x _ { i _ { 0 } } } = f _ { i } ( x ) , \quad f _ { i } \in C ( U ) , \quad i \neq i _ { 0 }. $$ conf 0.594

s085590515.png (515)

116.(142.)* s085590527.png $A = \| \left. \begin{array} { l l } { \alpha } & { b } \\ { c } & { e } \end{array} \right. |$ $$ A = \left\| \begin{array} { l l } { \alpha } & { b } \\ { c } & { e } \end{array} \right\| $$ conf 0.506 F

s085590527.png (527)

117.(53.) s085590634.png $\Delta = ( F _ { x x } ^ { \prime \prime } ) _ { 0 } ( F _ { y y } ^ { \prime \prime } ) _ { 0 } - ( F _ { x y } ^ { \prime \prime } ) _ { 0 } ^ { 2 }$ $$ \Delta = ( F _ { x x } ^ { \prime \prime } ) _ { 0 } ( F _ { y y } ^ { \prime \prime } ) _ { 0 } - ( F _ { x y } ^ { \prime \prime } ) _ { 0 } ^ { 2 } $$ conf 0.920

s085590634.png (634)

118.(16.)* s085590645.png $\left| \begin{array} { l l l } { F _ { X } ^ { \prime } } & { F _ { y } ^ { \prime } } & { F _ { z } ^ { \prime } } \\ { G _ { \chi } ^ { \prime } } & { G _ { y } ^ { \prime } } & { G _ { Z } ^ { \prime } } \end{array} \right|$ $$ \left\| \begin{array} { l l l } { F _ { x } ^ { \prime } } & { F _ { y } ^ { \prime } } & { F _ { z } ^ { \prime } } \\ { G _ { x } ^ { \prime } } & { G _ { y } ^ { \prime } } & { G _ { Z } ^ { \prime } } \end{array} \right\| $$ conf 0.230 F

s085590645.png (645)

119.(92.) s085590653.png $( F _ { X } ^ { \prime } ) _ { 0 } = 0 , \quad ( F _ { y } ^ { \prime } ) _ { 0 } = 0 , \quad ( F _ { z } ^ { \prime } ) _ { 0 } = 0$ $$ ( F _ { x } ^ { \prime } ) _ { 0 } = 0 , \quad ( F _ { y } ^ { \prime } ) _ { 0 } = 0 , \quad ( F _ { z } ^ { \prime } ) _ { 0 } = 0. $$ conf 0.300

s085590653.png (653)

Solv manifold

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

120.(138.) s08610054.png $\{ e \} \rightarrow \Delta \rightarrow \pi \rightarrow Z ^ { s } \rightarrow \{ e \}$ $$ \{ e \} \rightarrow \Delta \rightarrow \pi \rightarrow {\mathbf Z} ^ { s } \rightarrow \{ e \} $$ conf 0.972

s08610054.png (54)

Stability theorems in algebraic K-theory

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

121.(71.) s08706033.png $\psi _ { t _ { 1 } , \ldots , t _ { R } } ^ { \prime } : S K _ { 1 } ( R ) \rightarrow S K _ { 1 } ( R ( t _ { 1 } , \ldots , t _ { n } ) )$ $$ \psi _ { t _ { 1 } , \ldots , t _ { n } } ^ { \prime } : S K _ { 1 } ( R ) \rightarrow S K _ { 1 } ( R ( t _ { 1 } , \ldots , t _ { n } ) ). $$ conf 0.379

s08706033.png (33)

Steinberg module

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

122.(130.) s13053016.png $e = \frac { | U | } { | G | } ( \sum _ { b \in B } b ) ( \sum _ { w \in W } \operatorname { sign } ( w ) w )$ $$ e = \frac { | U | } { | G | } \big( \sum _ { b \in B } b \big) \big( \sum _ { w \in W } \operatorname { sign } ( w ) w \big) $$ conf 0.138

s13053016.png (16)

Steinberg symbol

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

123.(24.)* s13054017.png $( x _ { i j } ( a ) , x _ { k l } ( b ) ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } i \neq 1 , j \neq k } \\ { x _ { 1 } ( a b ) } & { \text { if } i \neq 1 , j = k } \end{array} \right.$ $$ ( x _ { i j } ( a ) , x _ { k l } ( b ) ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } i \neq l , j \neq k }, \\ { x _ {il} ( a b ) } & { \text { if } i \neq l , j = k }. \end{array} \right. $$ conf 0.381 F

s13054017.png (17)

Tilting theory

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

124.(84.) t130130105.png $0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ $$ 0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0 $$ conf 0.946

t130130105.png (105)

Tits quadratic form

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

125.(18.) t130140104.png $q R ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { i } x _ { j } + \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { , j } x _ { i } x _ { j }$ $$ q_R ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { i } x _ { j } + \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } r _ {i , j } x _ { i } x _ { j }, $$ conf 0.112

t130140104.png (104)

126.(40.) t130140118.png $[ X ] \mapsto \chi _ { R } ( [ X ] ) = \sum _ { m = 0 } ^ { \infty } ( - 1 ) ^ { m } \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { m } ( X , X )$ $$ [ X ] \mapsto \chi _ { R } ( [ X ] ) = \sum _ { m = 0 } ^ { \infty } ( - 1 ) ^ { m } \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { m } ( X , X ) $$ conf 0.116

t130140118.png (118)

127.(132.)* t130140119.png $\operatorname { dim } _ { 1 } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow Z ^ { Q _ { 0 } }$ $$ \underline { \dim } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow {\mathbf Z} ^ { Q _ { 0 } } $$ conf 0.287 F

t130140119.png (119)

128.(37.)* t130140140.png $q ( x ) = \sum _ { i \in I } x _ { i } ^ { 2 } + \sum _ { i \prec j } x _ { i } x _ { j } - \sum _ { p \in \operatorname { max } l } ( \sum _ { i \prec p } x _ { i } ) x _ { p }$ $$ q_I ( x ) = \sum _ { i \in I } x _ { i } ^ { 2 } + \sum _ { i \prec j \atop j\in I\setminus {\rm max}I} x _ { i } x _ { j } - \sum _ { p \in \operatorname { max }I } \big( \sum _ { i \prec p } x _ { i } \big) x _ { p } $$ conf 0.197 F

t130140140.png (140)

129.(131.)* t13014044.png $X \mapsto \operatorname { dim } X = ( \operatorname { dim } _ { K } X _ { j } ) _ { j \in Q _ { 0 } }$ $$ X \mapsto \underline { \dim } X = ( \operatorname { dim } _ { K } X _ { j } ) _ { j \in Q _ { 0 } } $$ conf 0.819 F

t13014044.png (44)

130.(25.As it does contain a lot of $\teX$) t13014048.png $[ X ] \mapsto \chi _ { Q } ( [ X ] ) = \operatorname { dim } _ { K } \operatorname { End } _ { Q } ( X ) - \operatorname { dim } _ { K } \operatorname { Ext } _ { Q } ^ { 1 } ( X , X )$ $$ [ X ] \mapsto \chi _ { Q } ( [ X ] ) = \operatorname { dim } _ { K } \operatorname { End } _ { Q } ( X ) - \operatorname { dim } _ { K } \operatorname { Ext } _ { Q } ^ { 1 } ( X , X ) $$ conf 0.661

t13014048.png (48)

131.(38.)* t13014056.png $A _ { Q } ( v ) = \prod _ { i , j \in Q _ { 0 } } \prod _ { \langle \beta : j \rightarrow i \rangle \in Q _ { 1 } } M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta }$ $$ A _ { Q } ( v ) = \prod _ { i , j \in Q _ { 0 } } \prod _ { \langle \beta : j \rightarrow i \rangle \in Q _ { 1 } } M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta } $$ conf 0.481 F

t13014056.png (56)

132.(139.)* t1301406.png $\Phi ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { i , j \in Q _ { 0 } } d _ { i j } x _ { i } x _ { j }$ $$ q_Q ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { i , j \in Q _ { 0 } } d _ { i j } x _ { i } x _ { j }, $$ conf 0.648 F

t1301406.png (6)

Torus

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

133.(41.)* t0933502.png $r = \alpha \operatorname { sin } u k + l ( 1 + \epsilon \operatorname { cos } u ) ( i \operatorname { cos } v + j \operatorname { sin } v )$ $$ r = \alpha \operatorname { sin } u {\bf k} + l ( 1 + \epsilon \operatorname { cos } u ) ( {\bf i} \operatorname { cos } v + {\bf j} \operatorname { sin } v ) $$ conf 0.585 F

t0933502.png (2)

134.(122.)* t0933507.png $d s ^ { 2 } = \alpha ^ { 2 } d u ^ { 2 } + l ^ { 2 } ( 1 + \epsilon \operatorname { cos } u ) ^ { 2 } d v ^ { 2 }$ $$ d s ^ { 2 } = \alpha ^ { 2 } d u ^ { 2 } + l ^ { 2 } ( 1 + \epsilon \operatorname { cos } u ) ^ { 2 } d v ^ { 2 }, $$ conf 0.696 F

t0933507.png (7)

Uniform distribution

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

135.(9.) u09524027.png $u _ { 3 } ( x ) = \left\{ \begin{array} { l l } { \frac { x ^ { 2 } } { 2 } , } & { 0 \leq x < 1 } \\ { \frac { [ x ^ { 2 } - 3 ( x - 1 ) ^ { 2 } ] } { 2 } , } & { 1 \leq x < 2 } \\ { \frac { [ x ^ { 2 } - 3 ( x - 1 ) ^ { 2 } + 3 ( x - 2 ) ^ { 2 } ] } { 2 } , } & { 2 \leq x < 3 } \\ { 0 , } & { x \notin [ 0,3 ] } \end{array} \right.$ $$ u _ { 3 } ( x ) = \left\{ \begin{array} { l l } { \frac { x ^ { 2 } } { 2 } , } & { 0 \leq x < 1, } \\ { \frac { [ x ^ { 2 } - 3 ( x - 1 ) ^ { 2 } ] } { 2 } , } & { 1 \leq x < 2, } \\ { \frac { [ x ^ { 2 } - 3 ( x - 1 ) ^ { 2 } + 3 ( x - 2 ) ^ { 2 } ] } { 2 } , } & { 2 \leq x < 3, } \\ { 0 , } & { x \notin [ 0,3 ]. } \end{array} \right. $$ conf 0.733

u09524027.png (27)

136.(32.)* u0952403.png $p ( x ) = \left\{ \begin{array} { l l } { \frac { 1 } { b - \alpha } , } & { x \in [ \alpha , b ] } \\ { 0 , } & { x \notin [ \alpha , b ] } \end{array} \right.$ $$ p ( x ) = \left\{ \begin{array} { l l } { \frac { 1 } { b - \alpha } , } & { x \in [ \alpha , b ], } \\ { 0 , } & { x \notin [ \alpha , b ]. } \end{array} \right. $$ conf 0.681 F

u0952403.png (3)

137.(34.) u09524030.png $u _ { n } ( x ) = \frac { 1 } { ( n - 1 ) ! } \sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) ( x - k ) _ { + } ^ { n - 1 }$ $$ u _ { n } ( x ) = \frac { 1 } { ( n - 1 ) ! } \sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) ( x - k ) _ { + } ^ { n - 1 } $$ conf 0.569

u09524030.png (30)

138.(109.) u09524034.png $z _ { + } = \left\{ \begin{array} { l l } { z , } & { z > 0 } \\ { 0 , } & { z \leq 0 } \end{array} \right.$ $$ z _ { + } = \left\{ \begin{array} { l l } { z , } & { z > 0 }. \\ { 0 , } & { z \leq 0 }. \end{array} \right. $$ conf 0.676

u09524034.png (34)

139.(43.) u0952407.png $F ( x ) = \left\{ \begin{array} { l l } { 0 , } & { x \leq a } \\ { \frac { x - a } { b - a } , } & { a < x \leq b } \\ { 1 , } & { x > b } \end{array} \right.$ $$ F ( x ) = \left\{ \begin{array} { l l } { 0 , } & { x \leq a }, \\ { \frac { x - a } { b - a } , } & { a < x \leq b }, \\ { 1 , } & { x > b }, \end{array} \right. $$ conf 0.468

u0952407.png (7)

140.(47.) u09524072.png $p ( x _ { 1 } , \ldots , x _ { n } ) = \left\{ \begin{array} { l l } { C \neq 0 , } & { x \in D } \\ { 0 , } & { x \notin D } \end{array} \right.$ $$ p ( x _ { 1 } , \ldots , x _ { n } ) = \left\{ \begin{array} { l l } { C \neq 0 , } & { x \in D }, \\ { 0 , } & { x \notin D }, \end{array} \right. $$ conf 0.705

u09524072.png (72)

Unipotent group

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

141.(143.) u0954106.png $\{ g \in \operatorname { GL } ( V ) : ( 1 - g ) ^ { n } = 0 \} , \quad n = \operatorname { dim } V$ $$ \{ g \in \operatorname { GL } ( V ) : ( 1 - g ) ^ { n } = 0 \} , \quad n = \operatorname { dim } V, $$ conf 0.287

u0954106.png (6)

Weyl module

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

142.(51.) w120090122.png $\operatorname { diag } ( t _ { 1 } , \ldots , t _ { n } ) \mapsto t _ { 1 } ^ { \lambda _ { 1 } } \ldots t _ { n } ^ { \lambda _ { n } } \in K$ $$ \operatorname { diag } ( t _ { 1 } , \ldots , t _ { n } ) \mapsto t _ { 1 } ^ { \lambda _ { 1 } } \ldots t _ { n } ^ { \lambda _ { n } } \in K, $$ conf 0.507

w120090122.png (122)

143.(54.)* w120090135.png $\chi _ { \lambda } = \sum _ { \mu \in \Lambda ( n ) } \operatorname { dim } _ { K } ( \Delta ( \lambda ) ^ { \mu } ) _ { e _ { \mu } }$ $$ \chi _ { \lambda } = \sum _ { \mu \in \Lambda ( n ) } \operatorname { dim } _ { K } ( \Delta ( \lambda ) ^ { \mu } ) _ { e _ { \mu } }, $$ conf 0.461 F

w120090135.png (135)

144.(110.) w120090259.png $\mathfrak { B } = \{ e _ { \pm } \alpha , h _ { \beta } : \alpha \in \Phi ^ { + } , \beta \in \Sigma \}$ $$ \mathfrak { B } = \{ e _ { \pm } \alpha , h _ { \beta } : \alpha \in \Phi ^ { + } , \beta \in \Sigma \}. $$ conf 0.381

w120090259.png (259)

145.(82.) w120090342.png $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ $$ \left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! } $$ conf 0.487

w120090342.png (342)

146.(28.)* w12009095.png $\mathfrak { S } _ { \{ 1 , \ldots , \lambda _ { 1 } \} } \times \mathfrak { S } _ { \{ \lambda _ { 1 } + 1 , \ldots , \lambda _ { 1 } + \lambda _ { 2 } \} } \times$ $$ \mathfrak { S } _ { \{ 1 , \ldots , \lambda _ { 1 } \} } \times \mathfrak { S } _ { \{ \lambda _ { 1 } + 1 , \ldots , \lambda _ { 1 } + \lambda _ { 2 } \} } \times \dots $$ conf 0.312 F

w12009095.png (95)

147.(104.) w12009096.png $\ldots \times \mathfrak { S } _ { \{ \lambda _ { 1 } + \ldots + \lambda _ { n - 1 } + 1 , \ldots , r \} }$ $$ \ldots \times \mathfrak { S } _ { \{ \lambda _ { 1 } + \ldots + \lambda _ { n - 1 } + 1 , \ldots , r \} }, $$ conf 0.259

w12009096.png (96)

Witt vector

Nr. Image of png File $\TeX$, 1st version $\TeX$, corrected version Confidence, F?

png file

148.(87.)* w098100172.png $\langle \alpha > < b \rangle = \langle \alpha b \rangle , \quad \langle 1 \rangle = f _ { 1 } = V _ { 1 } =$ $$ \langle \alpha > < b \rangle = \langle \alpha b \rangle , \quad \langle {\bf 1} \rangle = {\bf f} _ { 1 } = {\bf V} _ { 1 } = \text{ unit element}1,$$ conf 0.351 F

w098100172.png (172)

149.(123.)* w098100177.png $\langle \alpha + b \rangle = \sum _ { n = 1 } ^ { \infty } V _ { n } \langle r _ { n } ( \alpha , b ) f$ $$ \langle \alpha + b \rangle = \sum _ { n = 1 } ^ { \infty } {\bf V} _ { n } \langle r _ { n } ( \alpha , b ) {\bf f}_n. $$ conf 0.143 F

w098100177.png (177)

150.(102.) w098100190.png $\sigma ( \alpha _ { 1 } , \alpha _ { 2 } , \ldots ) = ( \alpha _ { 1 } ^ { p } , \alpha _ { 2 } ^ { p } , \ldots )$ $$ \sigma ( \alpha _ { 1 } , \alpha _ { 2 } , \ldots ) = ( \alpha _ { 1 } ^ { p } , \alpha _ { 2 } ^ { p } , \ldots ) $$ conf 0.771

w098100190.png (190)

How to Cite This Entry:
Ulf Rehmann/Table of automatically generated TeX code. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ulf_Rehmann/Table_of_automatically_generated_TeX_code&oldid=44207