Simple set
A recursively-enumerable set of natural numbers (cf. Enumerable set) whose complement is an immune set. Simple sets are intermediate in the sense of so-called -reducibility (cf. Recursive set theory) between solvable sets and creative sets. The latter are the largest among the enumerable sets in the sense of m-reducibility. Let P be an arbitrary simple set, and let K be an arbitrary creative set of natural numbers (e.g. the set of Gödel numbers of theorems of formal arithmetic); then there does not exist a general recursive function f reducing K to P, i.e. such that x \in K \Leftrightarrow f(x) \in P \ .
Reducibility of P to K always takes place, but not one solvable set is reducible to K.
References
[1] | V.A. Uspenskii, "Leçons sur les fonctions calculables" , Hermann (1966) (Translated from Russian) |
[2] | A.I. Mal'tsev, "Algorithms and recursive functions" , Wolters-Noordhoff (1970) (Translated from Russian) |
[3] | H. Rogers jr., "Theory of recursive functions and effective computability" , McGraw-Hill (1967) pp. 164–165 |
Simple set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Simple_set&oldid=34506