Whitehead homomorphism
$ J $-
homomorphism
A homomorphism from the stable homotopy group of the spectrum of $ \mathop{\rm SO} $ to the stable homotopy group of the spectrum of the sphere $ S ^ {0} $, defined in a special way. One construction of the Whitehead group is by the Hopf construction: A mapping $ \phi : S ^ {m} \rightarrow \mathop{\rm SO} ( q) $ determines a mapping $ ( J \phi ) : S ^ {m} \times S ^ {q-} 1 \rightarrow S ^ {q-} 1 $, which can be extended to a mapping $ J \phi : S ^ {m} \times E ^ {q} \rightarrow E _ {+} ^ {q} $ of $ S ^ {m} \times E ^ {q} $ to the upper hemi-sphere of $ S ^ {q} $. There is also an extension $ J \phi : E ^ {m+} 1 \times S ^ {q-} 1 \rightarrow E _ {-} ^ {q} $ to the lower hemi-sphere of $ S ^ {q} $, and this determines a mapping $ J \phi : S ^ {m+} q \rightarrow S ^ {q} $. This construction gives a mapping of homotopy classes, and so defines a homomorphism $ J: \pi _ {m} ^ {S} ( \mathop{\rm SO} ) \rightarrow \pi _ {m} ^ {S} ( S ^ {0} ) $, called the Whitehead group.
This homomorphism was first constructed by G.W. Whitehead , who also proved a theorem on the non-triviality of the infinite series of homotopy groups of spheres, $ \pi _ {n} ( S ^ {r} ) \neq 0 $, for the following values of $ n $ and $ r $:
<tbody> </tbody>
|
The stable homotopy groups $ \pi _ {m} ^ {S} ( \mathop{\rm SO} ) $ are described by the Bott periodicity theorem [2]:
<tbody> </tbody>
|
The image of the Whitehead homomorphism has been completely calculated (cf. [4], [5]): for $ m \equiv 0 $( $ \mathop{\rm mod} 8 $) and $ m> 0 $ the Whitehead group is a monomorphism and its image is a direct summand in the group $ \pi _ {m} ^ {S} ( S ^ {0} ) $; for $ m\equiv 1 $( $ \mathop{\rm mod} 8 $) and $ m> 1 $ the Whitehead group is a monomorphism on a direct summand of $ \pi _ {m} ^ {S} ( S ^ {0} ) $; for $ m= 4s- 1 $ the image of the Whitehead group is the cyclic group of order $ \tau ( 2s) $, giving a direct summand in $ \pi _ {m} ^ {S} ( S ^ {0} ) $, where $ \tau ( 2s) $ is the denominator of the irreducible fraction $ B _ {s} /( 4s) $, $ B _ {s} $ being the $ s $- th Bernoulli number (cf. Bernoulli numbers).
References
[1a] | G.W. Whitehead, "On the homotopy groups of spheres and rotation groups" Ann. of Math. , 43 (1942) pp. 634–640 MR0007107 Zbl 0060.41105 |
[1b] | G.W. Whitehead, "A generalization of the Hopf invariant" Ann. of Math. , 51 (1950) pp. 192–237 MR0041435 Zbl 0045.44202 Zbl 0041.51903 |
[2] | R. Bott, "The stable homotopy of the classical groups" Ann. of Math. , 70 (1959) pp. 313–337 MR0110104 Zbl 0129.15601 |
[3a] | J.F. Adams, "On the groups - I" Topology , 2 (1963) pp. 181–195 |
[3b] | J.F. Adams, "On the groups - II" Topology , 3 (1965) pp. 137–171 |
[3c] | J.F. Adams, "On the groups - III" Topology , 3 (1965) pp. 193–222 |
[3d] | J.F. Adams, "On the groups - IV" Topology , 5 (1966) pp. 21–71 |
[4] | J.C. Becker, D.H. Gottlieb, "The transfer map and fiber bundles" Topology , 14 (1975) pp. 1–12 MR0377873 Zbl 0306.55017 |
[5] | J.F. Adams, "Infinite loop spaces" , Princeton Univ. Press (1978) MR0505692 Zbl 0398.55008 |
Comments
Given a mapping $ f: X \times Y \rightarrow Z $ of topological spaces, quite generally the Hopf construction gives a mapping
$$ \Gamma f : X \star Y \rightarrow SZ $$
from the join $ X \star Y $ of $ X $ and $ Y $ to the suspension $ SZ $ of $ Z $, as follows. Consider
$$ f \times \mathop{\rm id} : X \times Y \times I \rightarrow Z \times I,\ \ ( x, y, t) \mapsto ( f( x, y), t). $$
The join $ X \star Y $ is a certain quotient space of $ X \times Y \times Z $ and $ SZ $ is a quotient space of $ Z \times I $. An elementary check shows that $ f \times \mathop{\rm id} $ is compatible with the corresponding equivalence relations, and hence defines a mapping $ \Gamma f $ as desired. Recall that $ S ^ {m} \star S ^ {n} \cong S ^ {m+} n+ 1 $, cf. Join.
Now, let $ \phi : S ^ {m} \rightarrow \mathop{\rm SO} ( q) $ be a mapping; each element of $ \mathop{\rm SO} ( q) $ induces a mapping $ S ^ {q-} 1 \rightarrow S ^ {q-} 1 $ of the $ ( q- 1) $- sphere into itself. Hence $ \phi $ induces a mapping
$$ \widetilde \phi : S ^ {m} \times S ^ {q-} 1 \rightarrow S ^ {q-} 1 . $$
Applying the Hopf construction to $ \widetilde \phi $ gives the mapping $ J \phi $:
$$ S ^ {m+} q \cong S ^ {m} \star S ^ {q-} 1 \mathop \rightarrow \limits ^ { {\Gamma \widetilde \phi }} \ S( S ^ {q-} 1 ) \cong S ^ {q} . $$
References
[a1] | B. Gray, "Homotopy theory. An introduction to algebraic topology" , Acad. Press (1975) pp. 334 MR0402714 Zbl 0322.55001 |
[a2] | R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) pp. 480ff MR0385836 Zbl 0305.55001 |
Whitehead homomorphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Whitehead_homomorphism&oldid=34362