One-parameter subgroup
of a Lie group $ G $
over a normed field $ K $
An analytic homomorphism of the additive group of the field $ K $ into $ G $, that is, an analytic mapping $ \alpha : K \rightarrow G $ such that
$$ \alpha ( s + t) = \alpha ( s) \alpha ( t),\ s, t \in K. $$
The image of this homomorphism, which is a subgroup of $ G $, is also called a one-parameter subgroup. If $ K = \mathbf R $, then the continuity of the homomorphism $ \alpha : K \rightarrow G $ implies that it is analytic. If $ K = \mathbf R $ or $ \mathbf C $, then for any tangent vector $ X \in T _ {e} G $ to $ G $ at the point $ e $ there exists a unique one-parameter subgroup $ \alpha : K \rightarrow G $ having $ X $ as its tangent vector at the point $ t = 0 $. Here $ \alpha ( t) = \mathop{\rm exp} tX $, $ t \in K $, where $ \mathop{\rm exp} : T _ {e} G \rightarrow G $ is the exponential mapping. In particular, any one-parameter subgroup of the general linear group $ G = \mathop{\rm GL} ( n, K) $ has the form
$$ \alpha ( t) = \mathop{\rm exp} tX = \ \sum _ {n = 0 } ^ \infty { \frac{1}{n! } } t ^ {n} X ^ {n} . $$
If $ G $ is a real Lie group endowed with a two-sidedly invariant pseudo-Riemannian metric or affine connection, then the one-parameter subgroups of $ G $ are the geodesics passing through the identity $ e $.
References
[1] | L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian) |
[2] | J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French) |
[3] | S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) |
Comments
References
[a1] | N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley (1975) (Translated from French) |
[a2] | N. Bourbaki, "Groupes et algèbres de Lie" , Hermann (1972) pp. Chapt. 2; 3 |
[a3] | G. Hochschild, "Structure of Lie groups" , Holden-Day (1965) |
One-parameter subgroup. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=One-parameter_subgroup&oldid=11235