Difference between revisions of "Homology product"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
|||
Line 110: | Line 110: | ||
$$ | $$ | ||
− | \mathop{\rm | + | \mathop{\rm Ext} _ {R \otimes S } ^ {p + q } ( A \otimes C, A ^ \prime \otimes C ^ \prime ). |
$$ | $$ | ||
Latest revision as of 08:41, 31 July 2024
An operation defined on the groups $ \mathop{\rm Tor} $
and $ \mathop{\rm Ext} $.
One considers $ K $-
algebras $ R, S $
and $ T = R \otimes _ {K} S $
over a commutative ring $ K $.
The derived functors (cf. Derived functor) $ \mathop{\rm Tor} $
and $ \mathop{\rm Ext} $
over them may be combined with one another by means of four homomorphisms, known as homology products:
$$ \perp : \mathop{\rm Tor} _ {p} ^ {R} ( A, A ^ \prime ) \otimes \mathop{\rm Tor} _ {q} ^ {S} ( C, C ^ \prime ) \rightarrow \ \mathop{\rm Tor} _ {p + q } ^ {T} ( A \otimes C, A ^ \prime \otimes C ^ \prime ), $$
$$ \perp : \mathop{\rm Ext} _ {T} ^ {p + q } ( A \otimes C, \mathop{\rm Hom} ( A ^ \prime , C ^ \prime )) \rightarrow $$
$$ \rightarrow \ \mathop{\rm Hom} ( \mathop{\rm Tor} _ {p} ^ {R} ( A ^ \prime , A), \mathop{\rm Ext} _ {s} ^ {q} ( C, C ^ \prime )), $$
$$ \lor : \mathop{\rm Ext} _ {R} ^ {p} ( A, A ^ \prime ) \otimes \mathop{\rm Ext} _ {s} ^ {q} ( C, C ^ \prime ) \rightarrow \mathop{\rm Ext} _ {T} ^ {p + q } ( A \otimes C, A ^ \prime \otimes C ^ \prime ), $$
$$ \wedge : \mathop{\rm Tor} _ {p + q } ^ {T} ( \mathop{\rm Hom} ( A, C), A ^ \prime \otimes C ^ \prime ) \rightarrow $$
$$ \rightarrow \ \mathop{\rm Hom} ( \mathop{\rm Ext} _ {R} ^ {p} ( A, A ^ \prime ), \mathop{\rm Tor} _ {q} ^ {S} ( C, C ^ \prime )). $$
Here, $ A $ and $ A ^ \prime $ are right or left $ R $- modules, $ C $ and $ C ^ \prime $ are right or left $ S $- modules, while the symbol $ K $ is omitted in all functors. The last two homomorphisms are defined only if the algebras $ R $ and $ S $ are projective over $ K $ and if $ \mathop{\rm Tor} _ {n} ^ {K} ( A, C) = 0 $ for all $ n > 0 $. If certain supplementary restrictions are made, intrinsic products can be obtained which connect $ \mathop{\rm Tor} $ and $ \mathop{\rm Ext} $ over the same ring.
All four products can be obtained from formulas representing the functors $ \otimes $ and $ \mathop{\rm Hom} $ by replacing the arguments by the corresponding resolutions [1]. The multiplication $ \lor $ permits the following interpretation in terms of Yoneda products. Let
$$ 0 \rightarrow A ^ \prime \rightarrow X _ {1} \rightarrow \dots \rightarrow X _ {p} \rightarrow A \rightarrow 0, $$
$$ 0 \rightarrow C ^ \prime \rightarrow Y _ {1} \rightarrow \dots \rightarrow Y _ {q} \rightarrow C \rightarrow 0 $$
be exact sequences of $ R $- and $ S $- modules, respectively, that are representatives of the corresponding equivalence classes in $ \mathop{\rm Ext} _ {R} ^ {p} ( A, A ^ \prime ) $ and $ \mathop{\rm Ext} _ {S} ^ {q} ( C, C ^ \prime ) $. Multiplying the former tensorially from the right by $ C ^ \prime $ and the latter from the left by $ A $, one obtains exact sequences
$$ 0 \rightarrow A ^ \prime \otimes C ^ \prime \rightarrow X _ {1} \otimes C ^ \prime \rightarrow \dots \rightarrow \ X _ {p} \otimes C ^ \prime \rightarrow A \otimes C ^ \prime \rightarrow 0, $$
$$ 0 \rightarrow A \otimes C ^ \prime \rightarrow A \otimes Y _ {1} \rightarrow \dots \rightarrow A \otimes Y _ {q} \rightarrow A \otimes C \rightarrow 0, $$
which can be combined into the exact sequence
$$ 0 \rightarrow A ^ \prime \otimes C ^ \prime \rightarrow \ X _ {1} \otimes C ^ \prime \rightarrow \dots \rightarrow A \otimes Y _ {q} \rightarrow A \otimes C \rightarrow 0. $$
This sequence can be regarded as the representative of an equivalence class in the group
$$ \mathop{\rm Ext} _ {R \otimes S } ^ {p + q } ( A \otimes C, A ^ \prime \otimes C ^ \prime ). $$
The product $ \lor $ in the cohomology space $ H ( X, \mathbf Z ) $ of a topological space $ X $ with coefficients in the ring of integers $ \mathbf Z $ is known as the Alexander–Kolmogorov product or the $ \cup $- product.
References
[1] | H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) |
[2] | S. MacLane, "Homology" , Springer (1963) |
Homology product. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Homology_product&oldid=55927