Difference between revisions of "Dirichlet kernel"
Line 64: | Line 64: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.G.L. Dirichlet, | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> P.G.L. Dirichlet, "Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données" ''J. für Math.'' , '''4''' (1829) pp. 157–169</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> P.G.L. Dirichlet, "Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données" , ''Werke'' , '''1''' , Chelsea, reprint (1969) pp. 117–132</TD></TR | ||
+ | ><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Tauber, "Ueber den Zusammenhang des reellen und imaginären Teiles einer Potentzreihe" ''Monatsh. Math.'' , '''2''' (1891) pp. 79–118</TD></TR> | ||
+ | <TR><TD valign="top">[4]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[5]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR> | ||
+ | </table> | ||
====Comments==== | ====Comments==== |
Latest revision as of 09:17, 9 June 2024
The expression
$$ D _ {n} ( x) = \frac{1}{2} + \sum _ {k = 1 } ^ { n } \cos k x = \frac{\sin ( n + 1 / 2 ) x }{2 \sin x / 2 } . $$
It was shown by P.G.L. Dirichlet [1] that the partial sum $ S _ {n} $ of the Fourier series of a function $ f $ is expressed by the Dirichlet kernel:
$$ S _ {n} ( x) = \frac{a _ {0} }{2} + \sum _ {k = 1 } ^ { n } a _ {k} \cos k x + b _ {k} \sin k x = $$
$$ = \ \frac{1} \pi \int\limits _ {- \pi } ^ \pi f ( t) D _ {n} ( t - x ) d t . $$
The integral on the right-hand side is said to be Dirichlet's singular integral.
In analogy with the Dirichlet kernel [3], the expression
$$ \widetilde{D} _ {n} ( x) = \sum _ {k = 1 } ^ { n } \sin k x = \frac{\cos x / 2 - \cos ( n + 1 / 2 ) x }{2 \sin x / 2 } $$
is called the conjugate Dirichlet kernel. The partial sum of the series conjugate with the Fourier series of a function $ f $ is expressed by the conjugate Dirichlet kernel:
$$ \widetilde{S} _ {n} ( x) = \sum _ {k = 1 } ^ { n } b _ {k} \cos k x - a _ {k} \sin k x = - \frac{1} \pi \int\limits _ {- \pi } ^ \pi f ( t) \widetilde{D} _ {n} ( t - x ) d t . $$
References
[1] | P.G.L. Dirichlet, "Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données" J. für Math. , 4 (1829) pp. 157–169 |
[2] | P.G.L. Dirichlet, "Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données" , Werke , 1 , Chelsea, reprint (1969) pp. 117–132 |
[3] | A. Tauber, "Ueber den Zusammenhang des reellen und imaginären Teiles einer Potentzreihe" Monatsh. Math. , 2 (1891) pp. 79–118 |
[4] | N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian) |
[5] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) |
Comments
The Dirichlet kernel is also called the Dirichlet summation kernel. There is also a different normalization in use: the kernels $ D _ {n} $ and $ \widetilde{D} _ {n} $ are often multiplied by 2. They are then represented also by the series
$$ \sum _ { k=-n }^{ n } e ^ {ikx} \ \ \textrm{ and } \ \ \sum _ { k=-n }^{ n } \frac{ \mathop{\rm sgn} n }{i} e ^ {ikx} , $$
respectively. The factors preceding the two integrals in the main article above then become $ \pm 1 / 2 \pi $ instead of $ \pm 1 / \pi $.
References
[a1] | H. Dym, H.P. McKean, "Fourier series and integrals" , Acad. Press (1972) |
[a2] | W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1953) |
Dirichlet kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dirichlet_kernel&oldid=55818