Difference between revisions of "Hensel lemma"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
|||
Line 53: | Line 53: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> K. Hensel, "Neue Grundlagen der Arithmetik" ''J. Reine Angew. Math.'' , '''127''' (1904) pp. 51–84 {{ZBL|35.0226.02}}</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> H. Zassenhaus, "Ueber eine Verallgemeinerung des Henselschen Lemmas" ''Arch. Math. (Basel)'' , '''5''' (1954) pp. 317–325</TD></TR> | ||
+ | </table> |
Latest revision as of 06:06, 26 May 2024
A statement obtained by K. Hensel [1] in the creation of the theory of $ p $-
adic numbers (cf. $ p $-
adic number), which subsequently found extensive use in commutative algebra. One says that Hensel's lemma is valid for a local ring $ A $
with maximal ideal $ \mathfrak m $
if for any unitary polynomial $ P( X) \in A[ X] $
and decomposition $ \overline{P}\; ( X) = q _ {1} ( X) \cdot q _ {2} ( X) $
of its reduction modulo $ \mathfrak m $
into a product of two mutually-prime polynomials
$$ q _ {1} ( X) , q _ {2} ( X) \in ( A/ \mathfrak m ) [ X] , $$
there exist polynomials
$$ Q _ {1} ( X) , Q _ {2} ( X) \in A [ X] $$
such that
$$ P ( X) = Q _ {1} ( X) \cdot Q _ {2} ( X),\ \ \overline{Q}\; _ {1} ( X) = q _ {1} ( X),\ \ \overline{Q}\; _ {2} ( X) = q _ {2} ( X) $$
(here the bar denotes the image under the reduction $ A \rightarrow A/ \mathfrak m $). In particular, for any simple root $ \alpha $ of the reduced polynomial $ \overline{P}\; ( X) $ there exists a solution $ a \in A $ of the equation $ P( X) = 0 $ which satisfies the condition $ \overline{a}\; = \alpha $. Hensel's lemma is fulfilled, for example, for a complete local ring. Hensel's lemma makes it possible to reduce the solution of an algebraic equation over a complete local ring to the solution of the corresponding equation over its residue field. Thus, in the ring $ \mathbf Z _ {7} $ of $ 7 $- adic numbers, Hensel's lemma yields the solvability of the equation $ X ^ {2} - 2 = 0 $, since this equation has two simple roots in the field $ \mathbf F _ {7} $ of seven elements. A local ring for which Hensel's lemma is valid is known as a Hensel ring.
For Hensel's lemma in the non-commutative case see [3].
References
[1] | K. Hensel, "Neue Grundlagen der Arithmetik" J. Reine Angew. Math. , 127 (1904) pp. 51–84 Zbl 35.0226.02 |
[2] | N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French) |
[3] | H. Zassenhaus, "Ueber eine Verallgemeinerung des Henselschen Lemmas" Arch. Math. (Basel) , 5 (1954) pp. 317–325 |
Hensel lemma. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hensel_lemma&oldid=55793